#' @importFrom BiocParallel bpvec
.calculateSensitivitiesStar <-
function (tSets = list(), exps=NULL,
cap=NA, na.rm=TRUE, area.type=c("Fitted","Actual"), nthread=1) {
# Set multicore options
op <- options()
options(mc.cores=nthread)
on.exit(options(op))
if (missing(area.type)) {
area.type <- "Fitted"
}
if (is.null(exps)) {
stop("expriments is empty!")
}
for (study in names(tSets)) {
sensitivityProfiles(tSets[[study]])$auc_recomputed_star <- NA
}
if (!is.na(cap)) {
trunc <- TRUE
}else{
trunc <- FALSE
}
for(i in seq_len(nrow(exps))) {
ranges <- list()
for (study in names(tSets)) {
ranges[[study]] <- as.numeric(sensitivityRaw(tSets[[study]])[exps[i,study], ,"Dose"])
}
ranges <- .getCommonConcentrationRange(ranges)
names(ranges) <- names(tSets)
for(study in names(tSets)) {
myx <- as.numeric(sensitivityRaw(tSets[[study]])[exps[i, study],,"Dose"]) %in% ranges[[study]]
sensitivityRaw(tSets[[study]])[exps[i,study],!myx, ] <- NA
}
}
for(study in names(tSets)){
auc_recomputed_star <- unlist(bpvec(rownames(sensitivityRaw(tSets[[study]])),
function(experiment, exps, study, dataset, area.type){
if(!experiment %in% exps[,study]){return(NA_real_)}
return(computeAUC(concentration=as.numeric(dataset[experiment,,1]),
viability=as.numeric(dataset[experiment,,2]),
trunc=trunc, conc_as_log=FALSE, viability_as_pct=TRUE, area.type=area.type)/100)
}, exps = exps, study = study, dataset = sensitivityRaw(tSets[[study]]), area.type=area.type))
sensitivityProfiles(tSets[[study]])$auc_recomputed_star <- auc_recomputed_star
}
return(tSets)
}
## This function computes AUC for the whole raw sensitivity data of a pset
.calculateFromRaw <- function(raw.sensitivity, cap=NA, nthread=1,
family=c("normal", "Cauchy"), scale = 0.07,
n = 1) {
# Set multicore options
op <- options()
options(mc.cores=nthread)
on.exit(options(op))
family <- match.arg(family)
AUC <- vector(length=dim(raw.sensitivity)[1])
names(AUC) <- dimnames(raw.sensitivity)[[1]]
IC50 <- vector(length=dim(raw.sensitivity)[1])
names(IC50) <- dimnames(raw.sensitivity)[[1]]
if (!is.na(cap)) {trunc <- TRUE}else{trunc <- FALSE}
if (nthread == 1){
pars <- lapply(names(AUC), function(exp, raw.sensitivity, family, scale, n) {
if(length(grep("///", raw.sensitivity[exp, , "Dose"])) > 0 | all(is.na(raw.sensitivity[exp, , "Dose"]))) {
NA
} else{
logLogisticRegression(raw.sensitivity[exp, , "Dose"], raw.sensitivity[exp, , "Viability"], trunc=trunc, conc_as_log=FALSE, viability_as_pct=TRUE, family=family, scale=scale, median_n=n)
}
},raw.sensitivity=raw.sensitivity, family = family, scale = scale, n = n)
names(pars) <- dimnames(raw.sensitivity)[[1]]
AUC <- unlist(lapply(names(pars), function(exp,raw.sensitivity, pars) {
if(any(is.na(pars[[exp]]))) {
NA
} else{
computeAUC(concentration=raw.sensitivity[exp, , "Dose"], Hill_fit=pars[[exp]], trunc=trunc, conc_as_log=FALSE, viability_as_pct=TRUE)
}
},raw.sensitivity=raw.sensitivity, pars=pars))
IC50 <- unlist(lapply(names(pars), function(exp, pars) {
if(any(is.na(pars[[exp]]))) {
NA
} else{
computeIC50(Hill_fit=pars[[exp]], trunc=trunc, conc_as_log=FALSE, viability_as_pct=TRUE)
}
}, pars=pars))
} else {
pars <- BiocParallel::bplapply(names(AUC), function(exp, raw.sensitivity, family, scale, n, trunc) {
if(length(grep("///", raw.sensitivity[exp, , "Dose"])) > 0 | all(is.na(raw.sensitivity[exp, , "Dose"]))) {
NA
} else{
logLogisticRegression(raw.sensitivity[exp, , "Dose"], raw.sensitivity[exp, , "Viability"], trunc=trunc, conc_as_log=FALSE, viability_as_pct=TRUE, family=family, scale=scale, median_n=n)
}
},raw.sensitivity=raw.sensitivity, family = family, scale = scale, n = n, trunc = trunc)
names(pars) <- dimnames(raw.sensitivity)[[1]]
AUC <- unlist(BiocParallel::bplapply(names(pars), function(exp, raw.sensitivity, pars, trunc) {
if(any(is.na(pars[[exp]]))) {
NA
} else{
computeAUC(concentration=raw.sensitivity[exp, , "Dose"], Hill_fit=pars[[exp]], trunc=trunc, conc_as_log=FALSE, viability_as_pct=TRUE)
}
},raw.sensitivity=raw.sensitivity, pars=pars, trunc = trunc))
IC50 <- unlist(BiocParallel::bplapply(names(pars), function(exp, pars, trunc) {
if(any(is.na(pars[[exp]]))) {
NA
} else{
computeIC50(Hill_fit=pars[[exp]], trunc=trunc, conc_as_log=FALSE, viability_as_pct=TRUE)
}
}, pars=pars, trunc = trunc))
}
names(AUC) <- dimnames(raw.sensitivity)[[1]]
names(IC50) <- dimnames(raw.sensitivity)[[1]]
return(list("AUC"=AUC, "IC50"=IC50, "pars"=pars))
}
## This function computes intersected concentration range between a list of concentration ranges
.getCommonConcentrationRange <- function(doses)
{
min.dose <- 0
max.dose <- 10^100
for(i in seq_along(doses))
{
min.dose <- max(min.dose, min(as.numeric(doses[[i]]), na.rm = TRUE), na.rm = TRUE)
max.dose <- min(max.dose, max(as.numeric(doses[[i]]), na.rm = TRUE), na.rm = TRUE)
}
common.ranges <- list()
for(i in seq_along(doses))
{
common.ranges[[i]] <- doses[[i]][
which.min(abs(as.numeric(doses[[i]])-min.dose)):max(
which(abs(as.numeric(doses[[i]]) - max.dose)==min(abs(as.numeric(doses[[i]]) - max.dose), na.rm=TRUE)))]
}
return(common.ranges)
}
## predict viability from concentration data and curve parameters
.Hill<-function(x, pars) {
return(pars[2] + (1 - pars[2]) / (1 + (10 ^ x / 10 ^ pars[3]) ^ pars[1]))
}
## calculate residual of fit
## FIXME:: Why is this different from CoreGx?
## FIXME:: Is this the same as PharmacoGx?
.residual <- function(x, y, n, pars, scale = 0.07, family = c("normal", "Cauchy"), trunc = FALSE) {
family <- match.arg(family)
Cauchy_flag = (family == "Cauchy") # Why?!
if (Cauchy_flag == FALSE) {
diffs <- .Hill(x, pars)-y
if (trunc == FALSE) {
return(sum(-log(CoreGx::.dmednnormals(diffs, n, scale))))
} else {
down_truncated <- abs(y) >= 1
up_truncated <- abs(y) <= 0
# For up truncated, integrate the cauchy dist up until -diff because anything less gets truncated to 0, and thus the residual is -diff, and the prob
# function becomes discrete
# For down_truncated, 1-cdf(diffs) = cdf(-diffs)
return(sum(-log(CoreGx::.dmednnormals(diffs[!(down_truncated | up_truncated)], n, scale))) + sum(-log(CoreGx::.edmednnormals(-diffs[up_truncated | down_truncated], n, scale))))
}
} else {
diffs <- .Hill(x, pars)-y
if (trunc == FALSE) {
return(sum(-log(CoreGx::.dmedncauchys(diffs, n, scale))))
} else {
down_truncated <- abs(y) >= 1
up_truncated <- abs(y) <= 0
# For up truncated, integrate the cauchy dist up until -diff because anything less gets truncated to 0, and thus the residual is -diff, and the prob
# function becomes discrete
# For down_truncated, 1-cdf(diffs) = cdf(-diffs)
return(sum(-log(CoreGx::.dmedncauchys(diffs[!(down_truncated | up_truncated)], n, scale))) + sum(-log(CoreGx::.edmedncauchys(-diffs[up_truncated | down_truncated], n, scale))))
}
}
}
## generate an initial guess for dose-response curve parameters by evaluating
## the residuals at different lattice points of the search space
## FIXME:: Why is this different from CoreGx?
## FIXME:: Is this the same as PharmacoGx?
.meshEval<-function(log_conc,
viability,
lower_bounds = c(0, 0, -6),
upper_bounds = c(4, 1, 6),
density = c(2, 10, 2),
scale = 0.07,
n = 1,
family = c("normal", "Cauchy"),
trunc = FALSE) {
family <- match.arg(family)
guess <- c(pmin(pmax(1, lower_bounds[1]), upper_bounds[1]),
pmin(pmax(min(viability), lower_bounds[2]), upper_bounds[2]),
pmin(pmax(log_conc[which.min(abs(viability - 1/2))], lower_bounds[3]), upper_bounds[3]))
guess_residual<- .residual(log_conc,
viability,
pars = guess,
n=n,
scale = scale,
family = family,
trunc = trunc)
for (i in seq(from = lower_bounds[1], to = upper_bounds[1], by = 1 / density[1])) {
for (j in seq(from = lower_bounds[2], to = upper_bounds[2], by = 1 / density[2])) {
for (k in seq(from = lower_bounds[3], to = upper_bounds[3], by = 1 / density[3])) {
test_guess_residual <- .residual(log_conc,
viability,
pars = c(i, j, k),
n=n,
scale = scale,
family = family,
trunc = trunc)
if(!is.finite(test_guess_residual)){
warning(paste0(" Test Guess Residual is: ", test_guess_residual, "\n Other Pars: log_conc: ", paste(log_conc, collapse=", "), "\n Viability: ", paste(viability, collapse=", "), "\n Scale: ", scale, "\n Family: ", family, "\n Trunc ", trunc, "\n HS: ", i, ", Einf: ", j, ", logEC50: ", k, "\n n: ", n))
}
if(!length(test_guess_residual)){
warning(paste0(" Test Guess Residual is: ", test_guess_residual, "\n Other Pars: log_conc: ", paste(log_conc, collapse=", "), "\n Viability: ", paste(viability, collapse=", "), "\n Scale: ", scale, "\n Family: ", family, "\n Trunc ", trunc, "\n HS: ", i, ", Einf: ", j, ", logEC50: ", k, "\n n: ", n))
}
if (test_guess_residual < guess_residual) {
guess <- c(i, j, k)
guess_residual <- test_guess_residual
}
}
}
}
return(guess)
}
######## TODO ADD computationg from being passed in params
# Fits dose-response curves to data given by the user
# and returns the AUC of the fitted curve, normalized to the length of the concentration range.
#
# @param concentration [vector] is a vector of drug concentrations.
#
# @param viability [vector] is a vector whose entries are the viability values observed in the presence of the
# drug concentrations whose logarithms are in the corresponding entries of the log_conc, expressed as percentages
# of viability in the absence of any drug.
#
# @param trunc [logical], if true, causes viability data to be truncated to lie between 0 and 1 before
# curve-fitting is performed.
.computeAUCUnderFittedCurve <- function(concentration, viability, trunc=TRUE, verbose=FALSE) {
log_conc <- concentration
#FIT CURVE AND CALCULATE IC50
pars <- unlist(logLogisticRegression(log_conc,
viability,
conc_as_log = TRUE,
viability_as_pct = FALSE,
trunc = trunc))
x <- CoreGx::.getSupportVec(log_conc)
return(1 - trapz(x, .Hill(x, pars)) / (log_conc[length(log_conc)] - log_conc[1]))
}
#This function is being used in computeSlope
.optimizeRegression <- function(x, y, x0 = -3, y0 = 100)
{
beta1 = (sum(x * y) - y0 * sum(x)) / (sum(x * x) - x0 * sum(x))
return(beta1)
}
updateMaxConc <- function(tSet) {
sensitivityInfo(tSet)$max.conc <- apply(sensitivityRaw(tSet)[,,"Dose"], 1, max, na.rm=TRUE)
return(tSet)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.