#' Takes molecular data from a RadioSet, and summarises them
#' into one entry per drug
#'
#' Given a RadioSet with molecular data, this function will summarize
#' the data into one profile per cell line, using the chosed summary.stat. Note
#' that this does not really make sense with perturbation type data, and will
#' combine experiments and controls when doing the summary if run on a
#' perturbation dataset.
#'
#' @examples
#' data(clevelandSmall)
#' clevelandSmall <- summarizeMolecularProfiles(clevelandSmall,
#' mDataType = "rna", cell.lines=sampleNames(clevelandSmall),
#' summary.stat = 'median', fill.missing = TRUE, verbose=TRUE)
#' clevelandSmall
#'
#' @param object \code{RadioSet} The RadioSet to summarize
#' @param mDataType \code{character} which one of the molecular data types
#' to use in the analysis, out of all the molecular data types available for the rSet
#' for example: rna, rnaseq, snp
#' @param cell.lines \code{character} The cell lines to be summarized.
#' If any cell.line has no data, missing values will be created
#' @param features \code{caracter} A vector of the feature names to include in the summary
#' @param summary.stat \code{character} which summary method to use if there are repeated
#' cell.lines? Choices are "mean", "median", "first", or "last"
#' In case molecular data type is mutation or fusion "and" and "or" choices are available
#' @param fill.missing \code{boolean} should the missing cell lines not in the
#' molecular data object be filled in with missing values?
#' @param summarize A flag which when set to FALSE (defaults to TRUE) disables
#' summarizing and returns the data unchanged as a ExpressionSet
#' @param verbose \code{boolean} should messages be printed
#' @return \code{matrix} An updated RadioSet with the molecular data summarized
#' per cell line.
#'
#' @importMethodsFrom CoreGx summarizeMolecularProfiles
#' @export
setMethod('summarizeMolecularProfiles',
signature(object='RadioSet'),
function(object, mDataType, cell.lines, features, summary.stat=c("mean", "median", "first", "last", "and", "or"),
fill.missing=TRUE, summarize=TRUE, verbose=TRUE) {
.summarizeMolecularProfilesRadioSet(object=object, mDataType=mDataType, cell.lines=cell.lines,
features=features, summary.stat=summary.stat,
fill.missing=fill.missing, summarize=summarize, verbose=verbose)
})
# Takes molecular data from a RadioSet, and summarises them
# into one entry per drug
#
# Given a RadioSet with molecular data, this function will summarize
# the data into one profile per cell line, using the chosed summary.stat. Note
# that this does not really make sense with perturbation type data, and will
# combine experiments and controls when doing the summary if run on a
# perturbation dataset.
#
# @examples
# data(clevelandSmall)
# clevelandSmall <- summarizeMolecularProfiles(clevelandSmall,
# mDataType = "rna", cell.lines=sampleNames(clevelandSmall),
# summary.stat = 'median', fill.missing = TRUE, verbose=TRUE)
# clevelandSmall
#
# @param object \code{RadioSet} The RadioSet to summarize
# @param mDataType \code{character} which one of the molecular data types
# to use in the analysis, out of all the molecular data types available for the rSet
# for example: rna, rnaseq, snp
# @param cell.lines \code{character} The cell lines to be summarized.
# If any cell.line has no data, missing values will be created
# @param features \code{caracter} A vector of the feature names to include in the summary
# @param summary.stat \code{character} which summary method to use if there are repeated
# cell.lines? Choices are "mean", "median", "first", or "last"
# In case molecular data type is mutation or fusion "and" and "or" choices are available
# @param fill.missing \code{boolean} should the missing cell lines not in the
# molecular data object be filled in with missing values?
# @param summarize A flag which when set to FALSE (defaults to TRUE) disables
# summarizing and returns the data unchanged as a ExpressionSet
# @param verbose \code{boolean} should messages be printed
# @return \code{matrix} An updated RadioSet with the molecular data summarized
# per cell line.
#
#' @importFrom utils setTxtProgressBar txtProgressBar
#' @importFrom SummarizedExperiment SummarizedExperiment rowData rowData<- colData colData<- assays assays<- assayNames assayNames<-
#' @importFrom Biobase AnnotatedDataFrame
#' @importFrom matrixStats rowMeans2 rowMedians
#' @keywords internal
.summarizeMolecularProfilesRadioSet <- function(object,
mDataType,
cell.lines,
features,
summary.stat=c("mean", "median", "first", "last", "and", "or"),
fill.missing=TRUE,
summarize=TRUE,
verbose=TRUE) {
### Placed here to make sure the object argument gets checked first by R.
mDataTypes <- names(molecularProfilesSlot(object))
if (!(mDataType %in% mDataTypes)) {
stop (sprintf("Invalid mDataType, choose among: %s", paste(names(molecularProfilesSlot(object)), collapse=", ")))
}
if(summarize==FALSE){
return(molecularProfilesSlot(object)[[mDataType]])
}
if (missing(features)) {
features <- rownames(featureInfo(object, mDataType))
} else {
fix <- is.element(features, rownames(featureInfo(object, mDataType)))
if (verbose && !all(fix)) {
warning (sprintf("Only %i/%i features can be found", sum(fix), length(features)))
}
features <- features[fix]
}
summary.stat <- match.arg(summary.stat)
if((!S4Vectors::metadata(molecularProfilesSlot(object)[[mDataType]])$annotation %in% c("mutation","fusion")) & (!summary.stat %in% c("mean", "median", "first", "last"))) {
stop ("Invalid summary.stat, choose among: mean, median, first, last" )
}
if((S4Vectors::metadata(molecularProfilesSlot(object)[[mDataType]])$annotation %in% c("mutation","fusion")) & (!summary.stat %in% c("and", "or"))) {
stop ("Invalid summary.stat, choose among: and, or" )
}
if (missing(cell.lines)) {
cell.lines <- sampleNames(object)
}
dd <- molecularProfiles(object, mDataType)
pp <- phenoInfo(object, mDataType)
if(S4Vectors::metadata(molecularProfilesSlot(object)[[mDataType]])$annotation == "mutation") {
tt <- dd
tt[which(!is.na(dd) & dd =="wt")] <- FALSE
tt[which(!is.na(dd) & dd !="wt")] <- TRUE
tt <- apply(tt, 2, as.logical)
dimnames(tt) <- dimnames(dd)
dd <- tt
}
if(S4Vectors::metadata(molecularProfilesSlot(object)[[mDataType]])$annotation == "fusion") {
tt <- dd
tt[which(!is.na(dd) & dd =="0")] <- FALSE
tt[which(!is.na(dd) & dd !="0")] <- TRUE
tt <- apply(tt, 2, as.logical)
dimnames(tt) <- dimnames(dd)
dd <- tt
}
if (any(colnames(dd) != rownames(pp))) {
warning ("Samples in phenodata and expression matrices must be ordered the same way")
dd <- dd[ , rownames(pp), drop=FALSE]
}
if (!fill.missing) {
cell.lines <- intersect(cell.lines, unique(pp[!is.na(pp[ , "sampleid"]), "sampleid"]))
}
if (length(cell.lines) == 0) {
stop ("No cell lines in common")
}
## select profiles with no replicates
duplix <- unique(pp[!is.na(pp[ , "sampleid"]) & duplicated(pp[ , "sampleid"]), "sampleid"])
ucell <- setdiff(cell.lines, duplix)
## keep the non ambiguous cases
dd2 <- dd[ , match(ucell, pp[ , "sampleid"]), drop=FALSE]
pp2 <- pp[match(ucell, pp[ , "sampleid"]), , drop=FALSE]
if (length(duplix) > 0) {
if (verbose) {
message(sprintf("Summarizing %s molecular data for:\t%s", mDataType, annotation(object)$name))
total <- length(duplix)
# create progress bar
pb <- utils::txtProgressBar(min=0, max=total, style=3)
i <- 1
}
## replace factors by characters to allow for merging duplicated experiments
pp2 <- apply(pp2, 2, function (x) {
if (is.factor(x)) {
return (as.character(x))
} else {
return (x)
}
})
## there are some replicates to collapse
for (x in duplix) {
myx <- which(!is.na(pp[ , "sampleid"]) & is.element(pp[ , "sampleid"], x))
switch(summary.stat,
"mean" = {
ddt <- rowMeans2(dd[ , myx, drop=FALSE])
},
"median"={
ddt <- rowMedians(dd[ , myx, drop=FALSE])
},
"first"={
ddt <- dd[ , myx[1], drop=FALSE]
},
"last" = {
ddt <- dd[ , myx[length(myx)], drop=FALSE]
},
"and" = {
ddt <- apply(dd[ , myx, drop=FALSE], 1, function(x) do.call(`&`, as.list(x)))
},
"or" = {
ddt <- apply(dd[ , myx, drop=FALSE], 1, function(x) do.call(`|`, as.list(x)))
}
)
ppt <- apply(pp[myx, , drop=FALSE], 2, function (x) {
x <- paste(unique(as.character(x[!is.na(x)])), collapse="///")
return (x)
})
ppt[!is.na(ppt) & ppt == ""] <- NA
dd2 <- cbind(dd2, ddt)
pp2 <- rbind(pp2, ppt)
if (verbose){
utils::setTxtProgressBar(pb, i)
i <- i + 1
}
}
if (verbose) {
close(pb)
}
}
colnames(dd2) <- rownames(pp2) <- c(ucell, duplix)
## reorder cell lines
dd2 <- dd2[ , cell.lines, drop=FALSE]
pp2 <- pp2[cell.lines, , drop=FALSE]
pp2[ , "sampleid"] <- cell.lines
res <- molecularProfilesSlot(object)[[mDataType]]
if(S4Vectors::metadata(molecularProfilesSlot(object)[[mDataType]])$annotation %in% c("mutation", "fusion")) {
tt <- dd2
tt[which(!is.na(dd2) & dd2)] <- "1"
tt[which(!is.na(dd2) & !dd2)] <- "0"
dd2 <- tt
}
res <- SummarizedExperiment::SummarizedExperiment(dd2)
pp2 <- S4Vectors::DataFrame(pp2, row.names=rownames(pp2))
pp2$tissueid <- sampleInfo(object)[pp2$sampleid, "tissueid"]
SummarizedExperiment::colData(res) <- pp2
SummarizedExperiment::rowData(res) <- featureInfo(object, mDataType)
##TODO:: Generalize this to multiple assay SummarizedExperiments!
if(!is.null(SummarizedExperiment::assay(res, 1))) {
SummarizedExperiment::assay(res, 2) <-
matrix(rep(NA, length(assay(res, 1))),
nrow=nrow(assay(res, 1)),
ncol=ncol(assay(res, 1)),
dimnames=dimnames(assay(res, 1))
)
}
assayNames(res) <- assayNames(molecularProfilesSlot(object)[[mDataType]])
res <- res[features,]
S4Vectors::metadata(res) <- S4Vectors::metadata(molecularProfilesSlot(object)[[mDataType]])
return(res)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.