#' @importFrom BiocParallel bplapply
.calculateSensitivitiesStar <- function (pSets=list(), exps=NULL, cap=NA,
na.rm=TRUE, area.type=c("Fitted", "Actual"), nthread=1) {
if (missing(area.type)) {
area.type <- "Fitted"
}
if (is.null(exps)) {
stop("expriments is empty!")
}
for (study in names(pSets)) {
sensitivityProfiles(pSets[[study]])$auc_recomputed_star <- NA
}
if (!is.na(cap)) {
trunc <- TRUE
}else{
trunc <- FALSE
}
for (i in seq_len(nrow(exps))) {
ranges <- list()
for (study in names(pSets)) {
ranges[[study]] <- as.numeric(sensitivityRaw(pSets[[study]])[
exps[i, study], , "Dose"
])
}
ranges <- .getCommonConcentrationRange(ranges)
names(ranges) <- names(pSets)
for (study in names(pSets)) {
myx <- as.numeric(sensitivityRaw(pSets[[study]])[
exps[i, study],,"Dose"]) %in% ranges[[study]
]
sensitivityRaw(pSets[[study]])[exps[i, study], !myx, ] <- NA
}
}
op <- options()
options(mc.cores=nthread)
on.exit(options(op))
for (study in names(pSets)) {
auc_recomputed_star <- unlist(
bplapply(rownames(sensitivityRaw(pSets[[study]])),
FUN=function(experiment, exps, study, dataset, area.type) {
if (!experiment %in% exps[,study]) return(NA_real_)
return(computeAUC(
concentration=as.numeric(dataset[experiment, , 1]),
viability=as.numeric(dataset[experiment, , 2]),
trunc=trunc, conc_as_log=FALSE, viability_as_pct=TRUE,
area.type=area.type
) / 100
)
},
exps=exps, study=study, dataset=sensitivityRaw(pSets[[study]]),
area.type=area.type)
)
sensitivityProfiles(pSets[[study]])$auc_recomputed_star <-
auc_recomputed_star
}
return(pSets)
}
## This function computes AUC for the whole raw sensitivity data of a pset
.calculateFromRaw <- function(raw.sensitivity, cap=NA, nthread=1,
family=c("normal", "Cauchy"), scale=0.07, n=1) {
family <- match.arg(family)
AUC <- vector(length=dim(raw.sensitivity)[1])
names(AUC) <- dimnames(raw.sensitivity)[[1]]
IC50 <- vector(length=dim(raw.sensitivity)[1])
names(IC50) <- dimnames(raw.sensitivity)[[1]]
trunc <- !is.na(cap)
if (nthread == 1) {
pars <- lapply(names(AUC),
FUN=function(exp, raw.sensitivity, family, scale, n) {
if (length(grep("///", raw.sensitivity[exp, , "Dose"])) > 0 ||
all(is.na(raw.sensitivity[exp, , "Dose"]))) {
NA
} else{
logLogisticRegression(raw.sensitivity[exp, , "Dose"],
raw.sensitivity[exp, , "Viability"], trunc=trunc,
conc_as_log=FALSE, viability_as_pct=TRUE, family=family,
scale=scale, median_n=n)
}
},
raw.sensitivity=raw.sensitivity, family=family, scale=scale,
n=n
)
names(pars) <- dimnames(raw.sensitivity)[[1]]
AUC <- unlist(lapply(names(pars),
FUN=function(exp, raw.sensitivity, pars) {
if (any(is.na(pars[[exp]]))) {
NA
} else{
computeAUC(concentration=raw.sensitivity[exp, , "Dose"],
Hill_fit=pars[[exp]], trunc=trunc, conc_as_log=FALSE,
viability_as_pct=TRUE)
}
},
raw.sensitivity=raw.sensitivity, pars=pars
))
IC50 <- unlist(lapply(names(pars), function(exp, pars) {
if (any(is.na(pars[[exp]]))) {
NA
} else{
computeIC50(Hill_fit=pars[[exp]], trunc=trunc,
conc_as_log=FALSE, viability_as_pct=TRUE)
}
}, pars=pars))
} else {
pars <- parallel::mclapply(names(AUC),
FUN=function(exp, raw.sensitivity, family, scale, n, trunc) {
if (length(grep("///", raw.sensitivity[exp, , "Dose"])) > 0 ||
all(is.na(raw.sensitivity[exp, , "Dose"]))) {
NA
} else {
logLogisticRegression(
raw.sensitivity[exp, , "Dose"],
raw.sensitivity[exp, , "Viability"],
trunc=trunc, conc_as_log=FALSE, viability_as_pct=TRUE,
family=family, scale=scale, median_n=n)
}
},
raw.sensitivity=raw.sensitivity, family=family, scale=scale, n=n,
trunc=trunc, mc.cores=nthread
)
names(pars) <- dimnames(raw.sensitivity)[[1]]
AUC <- unlist(parallel::mclapply(names(pars),
FUN=function(exp, raw.sensitivity, pars, trunc) {
if (any(is.na(pars[[exp]]))) {
NA
} else{
computeAUC(
concentration=raw.sensitivity[exp, , "Dose"],
Hill_fit=pars[[exp]],
trunc=trunc, conc_as_log=FALSE, viability_as_pct=TRUE)
}
},
raw.sensitivity=raw.sensitivity, pars=pars, trunc=trunc,
mc.cores=nthread
))
IC50 <- unlist(parallel::mclapply(names(pars),
FUN=function(exp, pars, trunc) {
if(any(is.na(pars[[exp]]))) {
NA
} else{
computeIC50(Hill_fit=pars[[exp]], trunc=trunc,
conc_as_log=FALSE, viability_as_pct=TRUE)
}
}, pars=pars, trunc=trunc, mc.cores=nthread
))
}
names(AUC) <- dimnames(raw.sensitivity)[[1]]
names(IC50) <- dimnames(raw.sensitivity)[[1]]
return(list("AUC"=AUC, "IC50"=IC50, "pars"=pars))
}
## This function computes intersected concentration range between a list of
## concentration ranges
.getCommonConcentrationRange <- function(doses) {
min.dose <- 0
max.dose <- 10^100
for (i in seq_len(length(doses))) {
min.dose <- max(min.dose, min(as.numeric(doses[[i]]), na.rm=TRUE),
na.rm=TRUE)
max.dose <- min(max.dose, max(as.numeric(doses[[i]]), na.rm=TRUE),
na.rm=TRUE)
}
common.ranges <- list()
for (i in seq_len(length(doses))) {
common.ranges[[i]] <- doses[[i]][
seq(which.min(abs(as.numeric(doses[[i]]) - min.dose)), max(
which(abs(as.numeric(doses[[i]]) - max.dose) ==
min(abs(as.numeric(doses[[i]]) - max.dose), na.rm=TRUE)
))
)
]
}
return(common.ranges)
}
## predict viability from concentration data and curve parameters
.Hill <- function(x, pars) {
return(pars[2] + (1 - pars[2]) / (1 + (10 ^ x / 10 ^ pars[3]) ^ pars[1]))
}
## calculate residual of fit
## FIXME:: Why is this different from CoreGx?
#' @importFrom CoreGx .dmedncauchys .dmednnormals .edmednnormals .edmedncauchys
.residual <- function(x, y, n, pars, scale=0.07, family=c("normal", "Cauchy"),
trunc=FALSE) {
family <- match.arg(family)
Cauchy_flag=(family == "Cauchy")
if (Cauchy_flag == FALSE) {
# return(sum((.Hill(x, pars) - y) ^ 2))
diffs <- .Hill(x, pars)-y
if (trunc == FALSE) {
return(sum(-log(.dmednnormals(diffs, n, scale))))
} else {
down_truncated <- abs(y) >= 1
up_truncated <- abs(y) <= 0
# For up truncated, integrate the cauchy dist up until -
#>because anything less gets truncated to 0, and thus the residual
#>is -diff, and the prob function becomes discrete For
#>down_truncated, 1-cdf(diffs)=cdf(-diffs)
return(
sum(-log(.dmednnormals(diffs[!(down_truncated | up_truncated)],
n, scale))) +
sum(-log(.edmednnormals(-diffs[up_truncated | down_truncated],
n, scale)))
)
}
} else {
diffs <- .Hill(x, pars) - y
if (trunc == FALSE) {
return(sum(-log(.dmedncauchys(diffs, n, scale))))
} else {
down_truncated <- abs(y) >= 1
up_truncated <- abs(y) <= 0
# For up truncated, integrate the cauchy dist up until -diff because
#> anything less gets truncated to 0, and thus the residual is -diff,
#>and the prob function becomes discrete For down_truncated,
#>1 - cdf(diffs) = cdf(-diffs)
return(
sum(-log(.dmedncauchys(diffs[!(down_truncated | up_truncated)],
n, scale))) +
sum(-log(.edmedncauchys(-diffs[up_truncated | down_truncated],
n, scale))))
}
}
}
##FIXME:: Why is this different from CoreGx?
.meshEval <- function(log_conc, viability, lower_bounds=c(0, 0, -6),
upper_bounds=c(4, 1, 6), density=c(2, 10, 2), scale=0.07, n=1,
family=c("normal", "Cauchy"), trunc=FALSE) {
family <- match.arg(family)
guess <- c(pmin(pmax(1, lower_bounds[1]), upper_bounds[1]),
pmin(pmax(min(viability), lower_bounds[2]), upper_bounds[2]),
pmin(pmax(log_conc[which.min(abs(viability - 1 / 2))], lower_bounds[3]),
upper_bounds[3]))
guess_residual <- .residual(log_conc, viability, pars=guess, n=n,
scale=scale, family=family, trunc=trunc)
for (i in seq(from=lower_bounds[1], to=upper_bounds[1],
by=1 / density[1])) {
for (j in seq(from=lower_bounds[2], to=upper_bounds[2],
by=1 / density[2])) {
for (k in seq(from=lower_bounds[3], to=upper_bounds[3],
by=1 / density[3])) {
test_guess_residual <- .residual(log_conc, viability,
pars=c(i, j, k), n=n, scale=scale, family=family,
trunc=trunc)
if (!is.finite(test_guess_residual)) {
warning(paste0(" Test Guess Residual is: ",
test_guess_residual, "\n Other Pars: log_conc: ",
paste(log_conc, collapse=", "), "\n Viability: ",
paste(viability, collapse=", "), "\n Scale: ", scale,
"\n Family: ", family, "\n Trunc ", trunc, "\n HS: ",
i, ", Einf: ", j, ", logEC50: ", k, "\n n: ", n))
}
if (!length(test_guess_residual)) {
warning(paste0(" Test Guess Residual is: ",
test_guess_residual, "\n Other Pars: log_conc: ",
paste(log_conc, collapse=", "), "\n Viability: ",
paste(viability, collapse=", "), "\n Scale: ", scale,
"\n Family: ", family, "\n Trunc ", trunc, "\n HS: ", i,
", Einf: ", j, ", logEC50: ", k, "\n n: ", n))
}
if (test_guess_residual < guess_residual) {
guess <- c(i, j, k)
guess_residual <- test_guess_residual
}
}
}
}
return(guess)
}
## FIXME:: Documentation?
# Fits dose-response curves to data given by the user
# and returns the AUC of the fitted curve, normalized to the length of the concentration range.
#
# @param concentration `numeric` is a vector of drug concentrations.
#
# @param viability `numeric` is a vector whose entries are the viability values observed in the presence of the
# drug concentrations whose logarithms are in the corresponding entries of the log_conc, expressed as percentages
# of viability in the absence of any drug.
#
# @param trunc `logical`, if true, causes viability data to be truncated to lie between 0 and 1 before
# curve-fitting is performed.
#' @importFrom CoreGx .getSupportVec
#' @export
#' @keywords internal
.computeAUCUnderFittedCurve <- function(concentration, viability, trunc=TRUE,
verbose=FALSE) {
log_conc <- concentration
#FIT CURVE AND CALCULATE IC50
pars <- unlist(logLogisticRegression(log_conc, viability,
conc_as_log=TRUE, viability_as_pct=FALSE, trunc=trunc))
x <- .getSupportVec(log_conc)
return(1 - trapz(x, .Hill(x, pars)) /
(log_conc[length(log_conc)] - log_conc[1]))
}
#This function is being used in computeSlope
.optimizeRegression <- function(x, y, x0=-3, y0=100) {
beta1 <- (sum(x * y) - y0 * sum(x)) / (sum(x * x) - x0 * sum(x))
return(beta1)
}
updateMaxConc <- function(pSet) {
sensitivityInfo(pSeto)$max.conc <- apply(sensitivityRaw(pSet)[, , "Dose"],
1, max, na.rm=TRUE)
return(pSet)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.