#' @include CoreSet-class.R LongTable-class.R
#' @importClassesFrom MultiAssayExperiment MultiAssayExperiment
#' @importFrom MultiAssayExperiment MultiAssayExperiment
#' @import checkmate
NULL
setClassUnion('list_OR_MAE', c('list', 'MultiAssayExperiment'))
.local_class <- 'CoreSet'
.local_data <- "clevelandSmall_cSet"
#' @title
#' CoreSet - A generic data container for molecular profiles and
#' treatment response data
#'
#' @slot annotation See Slots section.
#' @slot molecularProfiles See Slots section.
#' @slot sample See Slots section.
#' @slot treatment See Slots section.
#' @slot treatmentResponse See Slots section.
#' @slot perturbation See Slots section.
#' @slot curation See Slots section.
#' @slot datasetType See Slots section.
#'
#' @details
#' The CoreSet (cSet) class was developed as a superclass for pSets in the
#' PharmacoGx and RadioGx packages to contain the data generated in screens
#' of cancer sample lines for their genetic profile and sensitivities to therapy
#' (Pharmacological or Radiation). This class is meant to be a superclass which
#' is contained within the PharmacoSet (pSet) and RadioSet (rSet) objects
#' exported by PharmacoGx and RadioGx. The format of the data is similar for
#' both pSets and rSets, allowing much of the code to be abstracted into
#' the CoreSet super-class. However, the models involved with quantifying
#' sampleular response to Pharmacological and Radiation therapy are widely
#' different, and extension of the cSet class allows the
#' packages to apply the correct model for the given data.
#'
#' @section Slots:
#' * annotation: A `list` of annotation data about the ``r .local_class``,
#' including the `$name` and the session information for how the object
#' was created, detailing the exact versions of R and all the packages used.
#' * molecularProfiles: A `list` or `MultiAssayExperiment` containing
# a set of `SummarizedExperiment`s with molecular profile data for a given
#' ``r .local_class`` object.
#' * sample: A `data.frame` containg the annotations for all the samples
#' profiled in the data set, across all molecular data types and
#' treatment response experiments.
#' * treatment: A `data.frame` containing the annotations for all treatments
#' in the dataset, including the mandatory 'treatmentid' column to uniquely
#' identify each treatment.
#' * treatmentResponse: A `list` or `LongTable` containing all the data for the
#' treatment response experiment, including `$info`, a `data.frame`
#' containing the experimental info, `$raw` a 3D `array` containing raw data,
#' `$profiles`, a `data.frame` containing sensitivity profiles
#' statistics, and `$n`, a `data.frame` detailing the number of
#' experiments for each sample-drug/radiationInfo pair
#' * perturbation: `list` containing `$n`, a `data.frame`
#' summarizing the available perturbation data. This slot is currently
#' being deprecated.
#' * curation: `list` containing mappings for `treatment`,
#' `sample` and `tissue` names used in the data set to universal
#' identifiers used between different ``r .local_class`` objects.
#' * datasetType: `character` string of 'sensitivity',
#' 'perturbation', or both detailing what type of data can be found in the
#' ``r .local_class``, for proper processing of the data
#'
#' @seealso [`CoreSet-accessors`]
#'
#' @md
#' @aliases CoreSet-class
#' @exportClass CoreSet
.CoreSet <- setClass("CoreSet",
slots=list(
treatmentResponse="list_OR_LongTable",
annotation="list",
molecularProfiles="list_OR_MAE",
sample="data.frame",
treatment="data.frame",
datasetType="character",
perturbation="list",
curation="list"
)
)
# The default constructor above does a poor job of explaining the required structure of a CoreSet.
# The constructor function defined below guides the user into providing the required components of the curation and senstivity lists
# and hides the annotation slot which the user does not need to manually fill.
# This also follows the design of the Expression Set class.
## ==========================
## CONSTRUCTOR
## --------------------------
#' CoreSet constructor
#'
#' A constructor that simplifies the process of creating CoreSets, as well
#' as creates empty objects for data not provided to the constructor. Only
#' objects returned by this constructor are expected to work with the CoreSet
#' methods.
#'
#' ## __WARNING__:
#' Parameters to this function have been renamed!
#' * cell is now sample
#' * drug is now treatment
#'
#' @param name A \code{character} string detailing the name of the dataset
#' @param molecularProfiles A \code{list} of SummarizedExperiment objects containing
#' molecular profiles for each molecular data type.
#' @param sample A \code{data.frame} containing the annotations for all the sample
#' profiled in the data set, across all data types. Must contain the mandatory
#' `sampleid` column which uniquely identifies each sample in the object.
#' @param treatment A `data.frame` containing annotations for all treatments
#' profiled in the dataset. Must contain the mandatory `treatmentid` column
#' which uniquely identifies each treatment in the object.
#' @param sensitivityInfo A \code{data.frame} containing the information for the
#' sensitivity experiments. Must contain a 'sampleid' column with unique
#' identifiers to each sample, matching the `sample` object and a 'treatmentid'
#' columns with unique indenifiers for each treatment, matching the `treatment`
#' object.
#' @param sensitivityRaw A 3 Dimensional \code{array} contaning the raw drug
#' dose response data for the sensitivity experiments
#' @param sensitivityProfiles \code{data.frame} containing drug sensitivity profile
#' statistics such as IC50 and AUC
#' @param sensitivityN,perturbationN A \code{data.frame} summarizing the
#' available sensitivity/perturbation data
#' @param curationSample,curationTissue,curationTreatment A \code{data.frame} mapping
#' the names for samples, tissues and treatments used in the data set to
#' universal identifiers used between different CoreSet objects
#' @param datasetType A `character(1)` string of 'sensitivity',
#' 'preturbation', or 'both' detailing what type of data can be found in the
#' `CoreSet`, for proper processing of the data
#' @param verify `logical(1)`Should the function verify the CoreSet and
#' print out any errors it finds after construction?
#' @param ... Catch and parse any renamed constructor arguments.
#'
#' @return An object of class `CoreSet`
#'
#' @examples
#' data(clevelandSmall_cSet)
#' clevelandSmall_cSet
#'
#' @export
#'
#' @include LongTable-class.R
#' @import methods
#' @importFrom utils sessionInfo
#' @importFrom stats na.omit
#' @importFrom SummarizedExperiment rowData colData assays
CoreSet <- function(name, molecularProfiles=list(), sample=data.frame(),
sensitivityInfo=data.frame(), sensitivityRaw=array(dim=c(0,0,0)),
sensitivityProfiles=matrix(), sensitivityN=matrix(nrow=0, ncol=0),
perturbationN=array(NA, dim=c(0,0,0)), curationSample=data.frame(),
curationTissue=data.frame(), curationTreatment=data.frame(),
treatment=data.frame(), datasetType=c("sensitivity", "perturbation", "both"),
verify=TRUE, ...
) {
# .Deprecated("CoreSet2", package=packageName(), msg="The CoreSet class is
# being redesigned. Please use the new constructor to ensure forwards
# compatibility with future releases! Old objects can be updated with
# the updateObject method.", old="CoreSet")
# parse deprecated parameters to ensure changes don't break old code
dotnames <- ...names()
if ("cell" %in% dotnames) {
.warning("The cell parameter is deprecated, assigning to sample...")
sample <- cell
}
if ("drug" %in% dotnames) {
.warning("The drug paramter is deprecated, assigning to treatment...")
treatment <- drug
}
# ensure new sampleid and treatmentid identifiers are honoured
sample <- .checkForSampleId(sample)
treatment <- .checkForTreatmentId(treatment)
sensitivityInfo <- .checkForSampleId(sensitivityInfo)
sensitivityInfo <- .checkForTreatmentId(sensitivityInfo)
curationSample <- .checkForIdColumn(curationSample, c("sampleid", "unique.sampleid"), "cellid")
curationTreatment <- .checkForIdColumn(curationTreatment, c("treatmentid", "unique.treatmentid"), "drugid")
for (nm in names(molecularProfiles)) {
colData(molecularProfiles[[nm]]) <- .checkForSampleId(
colData(molecularProfiles[[nm]]))
# handle perturbation case
colData(molecularProfiles[[nm]]) <- .checkForIdColumn(
colData(molecularProfiles[[nm]]), "treatmentid", "drugid",
error=FALSE)
}
datasetType <- match.arg(datasetType)
annotation <- list()
annotation$name <- as.character(name)
annotation$dateCreated <- date()
annotation$sessionInfo <- sessionInfo()
annotation$call <- match.call()
for (i in seq_len(length(molecularProfiles))){
if (!is(molecularProfiles[[i]], "SummarizedExperiment")) {
stop(sprintf("Please provide the %s data as a SummarizedExperiment",
names(molecularProfiles[i])))
} else {
rowData(molecularProfiles[[i]]) <-
rowData(molecularProfiles[[i]])[
rownames(assays(molecularProfiles[[i]])[[1]]), , drop=FALSE
]
colData(molecularProfiles[[i]]) <- colData(molecularProfiles[[i]])[
colnames(assays(molecularProfiles[[i]])[[1]]), , drop=FALSE
]
}
}
sensitivity <- list()
if (!all(rownames(sensitivityInfo) == rownames(sensitivityProfiles) &
rownames(sensitivityInfo) == dimnames(sensitivityRaw)[[1]])) {
stop("Please ensure all the row names match between the sensitivity data.")
}
sensitivity$info <- as.data.frame(sensitivityInfo, stringsAsFactors=FALSE)
sensitivity$raw <- sensitivityRaw
sensitivity$profiles <- as.data.frame(sensitivityProfiles,
stringsAsFactors=FALSE)
sensitivity$n <- sensitivityN
curation <- list()
curation$sample <- as.data.frame(curationSample, stringsAsFactors=FALSE)
curation$tissue <- as.data.frame(curationTissue, stringsAsFactors=FALSE)
perturbation <- list()
perturbation$n <- perturbationN
if (datasetType == "perturbation" || datasetType == "both") {
perturbation$info <- "The metadata for the perturbation experiments is
available for each molecular type by calling the appropriate info
function. \n For example, for RNA transcriptome perturbations, the
metadata can be accessed using rnaInfo(cSet)."
} else {
perturbation$info <- "Not a perturbation dataset."
}
object <- .CoreSet(annotation=annotation,
molecularProfiles=molecularProfiles,
sample=as.data.frame(sample), datasetType=datasetType,
treatmentResponse=sensitivity, perturbation=perturbation,
curation=curation, treatment=treatment)
if (verify) { checkCsetStructure(object)}
## TODO:: Are these functions identitical in inheriting packages?
if(length(sensitivityN) == 0 &&
datasetType %in% c("sensitivity", "both")) {
sensNumber(object) <- .summarizeSensitivityNumbers(object)
}
if(length(perturbationN) == 0 &&
datasetType %in% c("perturbation", "both")) {
pertNumber(object) <- .summarizePerturbationNumbers(object)
}
return(object)
}
#' Utility to help identify and fix deprecated identifiers
#'
#' @param new_col `character(1)` The new identifier.
#' @param old_col `character(1)` A regex matching any old identifers to
#' replace.
#'
#' @return `rectangular` object, with old_col updated to new_col if it exists.
#'
#' @noRd
.checkForIdColumn <- function(df, new_col, old_col, error=TRUE) {
if (nrow(df) == 0 || ncol(df) == 0) return(df)
name <- as.character(substitute(df))
if (!any(colnames(df) %in% new_col)) {
if (old_col %in% colnames(df)) {
.warning("The ", old_col, "identifier is deprecated, updating to",
new_col, " in ", name, "!")
colnames(df) <- gsub(old_col, new_col[1], colnames(df))
} else {
if (error)
.error("The ", new_col[1], " identifier is mandatory in ", name, "!")
}
return(df)
}
return(df)
}
#' @noRd
.checkForTreatmentId <- function(df)
.checkForIdColumn(df, new_col="treatmentid", old_col="drugid")
#' @noRd
.checkForSampleId <- function(df)
.checkForIdColumn(df, new_col="sampleid", old_col="cellid")
#' @noRd
.docs_CoreSet2_constructor <- function(...) .parseToRoxygen(
"
@title Make a CoreSet with the updated class structure
@description
New implementation of the CoreSet constructor to support MAE and TRE. This
constructor will be swapped with the original `CoreSet` constructor as
part of an overhaul of the CoreSet class structure.
@param name A `character(1)` vector with the `{class_}` objects name.
@param treatment A `data.frame` with treatment level metadata. {tx_}
@param sample A `data.frame` with sample level metadata for the union
of samples in `treatmentResponse` and `molecularProfiles`. {sx_}
@param molecularProfiles A `MultiAssayExperiment` containing one
`SummarizedExperiment` object for each molecular data type.
@param treatmentResponse A `LongTable` or `LongTableDataMapper` object
containing all treatment response data associated with the `{class_}`
object.
@param curation {cx_}
@param perturbation A deprecated slot in a `{class_}` object included
for backwards compatibility. This may be removed in future releases.
@param datasetType A deprecated slot in a `{class_}` object included
for backwards compatibility. This may be removed in future releases.
@examples
data({data_})
{data_}
@return A `CoreSet` object storing standardized and curated treatment
response and multiomic profile data associated with a given publication.
@importFrom MultiAssayExperiment MultiAssayExperiment
@importFrom checkmate assertCharacter assertDataFrame assertClass assert
assertList assertSubset
",
...
)
#' @eval .docs_CoreSet2_constructor(class_=.local_class,
#' tx_="",
#' sx_="",
#' cx_="A `list(2)` object with two items named `treatment` and `sample` with
#' mappings from publication identifiers to standardized identifiers for
#' both annotations, respectively.",
#' data_=.local_data)
#' @md
#' @export
CoreSet2 <- function(name="emptySet", treatment=data.frame(),
sample=data.frame(), molecularProfiles=MultiAssayExperiment(),
treatmentResponse=LongTable(), datasetType="sensitivity",
perturbation=list(n=array(dim=3), info="No perturbation data!"),
curation=list(sample=data.frame(), treatment=data.frame())
) {
# -- update old curation names
names(curation) <- gsub("drug|radiation", "treatment", names(curation))
names(curation) <- gsub("cell", "sample", names(curation))
## -- input validation
assertCharacter(name, len=1)
assertDataFrame(treatment)
assertDataFrame(sample)
assertClass(molecularProfiles, "MultiAssayExperiment")
assert(
checkClass(treatmentResponse, "LongTable"),
checkClass(treatmentResponse, "LongTableDataMapper")
)
assertList(curation, min.len=2)
assertSubset(c("sample", "treatment"), choices=names(curation))
## -- capture object creation environment
annotation <- list(name=name, dateCreated=date(),
sessionInfo=sessionInfo(), call=match.call())
## -- conditionally materialize DataMapper
if (is(treatmentResponse, 'LongTableDataMapper'))
treatmentResponse <- metaConstruct(treatmentResponse)
## -- handle missing rownames for sample
if (!all(sample$sampleid == rownames(sample)))
rownames(sample) <- sample$sampleid
object <- .CoreSet(
annotation=annotation,
sample=sample,
treatment=treatment,
molecularProfiles=molecularProfiles,
treatmentResponse=treatmentResponse,
datasetType=datasetType,
curation=curation,
perturbation=perturbation
)
## -- data integrity checks
# molecularProfiles
validProfiles <- .checkMolecularProfiles(object)
# treatmentResponse
validTreatments <- .checkTreatmentResponse(object)
diagnosis <- c(!isTRUE(validProfiles), !isTRUE(validTreatments))
if (any(diagnosis)) {
.error(paste0(list(validProfiles, validTreatments)[diagnosis],
collapse="\n", sep="\n"))
}
return(object)
}
#' Show a CoreSet
#'
#' @param object `CoreSet` object to show via `cat`.
#'
#' @seealso [`cat`]
#'
#' @examples
#' show(clevelandSmall_cSet)
#'
#' @return Prints the CoreSet object to the output stream, and returns
#' invisible NULL.
#'
#' @importFrom crayon %+% yellow red green blue cyan magenta
#'
#' @md
#' @export
setMethod("show", signature=signature(object="CoreSet"), function(object) {
if (!.hasSlot(object, "sample") || !.hasSlot(object, "treatment"))
stop(.errorMsg("This ", class(object)[1], " object appears to be out",
"of date! Please run object <- updateObject(object) to update ",
"the object for compatibility with the current release."),
call.=FALSE)
cat(yellow$bold$italic(paste0("<", class(object)[1], ">\n")))
space <- " "
cat(yellow$bold$italic("Name: ") %+% green(name(object)), "\n")
cat(yellow$bold$italic("Date Created: ") %+% green(dateCreated(object)), "\n")
# cat("Number of samples: ", nrow(sampleInfo(object)), "\n")
cat(yellow$bold$italic("Number of samples: "), green(nrow(sampleInfo(object))), "\n")
mProfiles <- molecularProfilesSlot(object)
mProfileNames <- names(mProfiles)
if (is(mProfiles, "MultiAssayExperiment")) {
cat(yellow$bold$italic("Molecular profiles: "))
cat(yellow$bold$italic(paste0("<", class(mProfiles)[1], ">"), '\n'))
# changing this to just experiments() as its cleaner
# showMAE <- capture.output(show(mProfiles))
# dropAfter <- which(grepl("Functionality", showMAE)) - 1
# showCompactMAE <- showMAE[1:dropAfter]
# cat(space, paste0(showCompactMAE, collapse="\n "), "\n")
showExp <- capture.output(experiments(mProfiles))
cat(space, yellow$bold(showExp[1], '\n'))
# iterate through rest of experiments
# split by ":" and print the first element in yellow, the rest in cyan
for (i in 2:length(showExp)) {
splitExp <- strsplit(showExp[i], ":")[[1]]
# print the first 5 characters in splitExp[1] in yellow
cat(space, yellow$bold(substr(splitExp[1], 1, 5)))
# print after the first 5 characters in spllitExp[1] in cyan
cat(
red(substr(splitExp[1], 6, nchar(splitExp[1]))),
green(paste0(":", splitExp[2:length(splitExp)], collapse=":"),'\n'))
}
# samplenames <- sort(sampleNames(object))
# samplenames <-
# if (length(samplenames) > 6) {
# paste0(.collapse(head(samplenames, 3)), ' ... ', .collapse(tail(samplenames, 3)))
# } else {
# .collapse(samplenames)
# }
# x <- yellow$bold(paste0("colnames(", length(sampleNames(object)), "):"))
# cat(space, x, green(samplenames), "\n")
} else {
cat(yellow$bold$italic("Molecular profiles: \n"))
if (!length(mProfileNames)) cat(space, "None\n")
for (item in mProfileNames) {
title <- switch(item,
"dna"="DNA",
"rna"="RNA",
"rnaseq"="RNAseq",
"snp"="SNP",
"cnv"="CNV",
item
)
cat(title, ":\n")
cat(paste0(space, "Dim: ",
paste0(dim(molecularProfiles(object, mDataType=item)), collapse=", ")),
"\n"
)
}
}
cat(yellow$bold$italic("Treatment response: "))
if (is(treatmentResponse(object), "LongTable")) {
show(treatmentResponse(object))
# showLT <- capture.output(show(treatmentResponse(object)))
# cat(space, paste0(showLT, collapse="\n "), "\n")
} else {
cat("Drug pertubation:\n")
cat(space,
"Please look at pertNumber(cSet) to determine number of experiments",
" for each drug-sample combination.\n")
cat("Drug sensitivity:\n")
cat(space, "Number of Experiments: ", nrow(sensitivityInfo(object)), "\n")
cat(space, "Please look at sensNumber(cSet) to determine number of ",
"experiments for each drug-sample combination.\n")
}
})
#' Update the sample ids in a cSet object
#'
#' @examples
#' updateSampleId(clevelandSmall_cSet, sampleNames(clevelandSmall_cSet))
#'
#' @param object The object for which the sample ids will be updated
#' @param new.ids The new ids to assign to the object
#'
#' @return \code{CoreSet} The modified CoreSet object
#'
#' @keywords internal
#' @importFrom S4Vectors endoapply
#' @importFrom SummarizedExperiment colData rowData
#' @export
updateSampleId <- function(object, new.ids=vector("character")) {
if (length(new.ids) != nrow(sampleInfo(object))){
stop("Wrong number of sample identifiers")
}
if (datasetType(object) == "sensitivity" || datasetType(object) == "both") {
myx <- match(sensitivityInfo(object)[, "sampleid"],
rownames(sampleInfo(object)))
if (is(treatmentResponse(object), 'LongTable')) {
LT <- treatmentResponse(object)
whichSampleIds <- which(colData(LT)$sampleid %in% sampleNames(object))
colData(LT)$sampleid <- new.ids[whichSampleIds]
treatmentResponse(object) <- LT
} else {
sensitivityInfo(object)[, "sampleid"] <- new.ids[myx]
}
}
molecularProfilesSlot(object) <- lapply(molecularProfilesSlot(object), function(SE) {
myx <- match(colData(SE)[["sampleid"]],
rownames(sampleInfo(object)))
colData(SE)[["sampleid"]] <- new.ids[myx]
return(SE)
})
if (any(duplicated(new.ids))) {
warning("Duplicated ids passed to updateSampleId. Merging old ids into",
" the same identifier")
if(ncol(sensNumber(object)) > 0) {
sensMatch <- match(rownames(sensNumber(object)),
rownames(sampleInfo(object)))
}
if(dim(pertNumber(object))[[2]] > 0) {
pertMatch <- match(dimnames(pertNumber(object))[[1]],
rownames(sampleInfo(object)))
}
curMatch <- match(rownames(curation(object)$sample),
rownames(sampleInfo(object)))
duplId <- unique(new.ids[duplicated(new.ids)])
for(id in duplId){
if (ncol(sensNumber(object)) > 0) {
myx <- which(new.ids[sensMatch] == id)
sensNumber(object)[myx[1],] <- apply(sensNumber(object)[myx, ],
2, sum)
sensNumber(object) <- sensNumber(object)[-myx[-1], ]
# sensMatch <- sensMatch[-myx[-1]]
}
if (dim(pertNumber(object))[[1]] > 0) {
myx <- which(new.ids[pertMatch] == id)
pertNumber(object)[myx[1], , ] <- apply(pertNumber(object)[myx, , ],
c(1,3), sum)
pertNumber(object) <- pertNumber(object)[-myx[-1], , ]
}
myx <- which(new.ids[curMatch] == id)
curation(object)$sample[myx[1],] <- apply(curation(object)$sample[myx, ], 2,
FUN=paste, collapse="///")
curation(object)$sample <- curation(object)$sample[-myx[-1], ]
curation(object)$tissue[myx[1],] <- apply(curation(object)$tissue[myx, ],
2, FUN=paste, collapse="///")
curation(object)$tissue <- curation(object)$tissue[-myx[-1], ]
myx <- which(new.ids == id)
sampleInfo(object)[myx[1],] <- apply(sampleInfo(object)[myx,], 2,
FUN=paste, collapse="///")
sampleInfo(object) <- sampleInfo(object)[-myx[-1], ]
new.ids <- new.ids[-myx[-1]]
if(ncol(sensNumber(object)) > 0){
sensMatch <- match(rownames(sensNumber(object)),
rownames(sampleInfo(object)))
}
if(dim(pertNumber(object))[[1]] > 0){
pertMatch <- match(dimnames(pertNumber(object))[[1]],
rownames(sampleInfo(object)))
}
curMatch <- match(rownames(curation(object)$sample),
rownames(sampleInfo(object)))
}
} else {
if (dim(pertNumber(object))[[1]] > 0) {
pertMatch <- match(dimnames(pertNumber(object))[[1]],
rownames(sampleInfo(object)))
}
if (ncol(sensNumber(object)) > 0) {
sensMatch <- match(rownames(sensNumber(object)),
rownames(sampleInfo(object)))
}
curMatch <- match(rownames(curation(object)$sample),
rownames(sampleInfo(object)))
}
if (dim(pertNumber(object))[[1]] > 0) {
dimnames(pertNumber(object))[[1]] <- new.ids[pertMatch]
}
if (ncol(sensNumber(object)) > 0) {
rownames(sensNumber(object)) <- new.ids[sensMatch]
}
rownames(curation(object)$sample) <- new.ids[curMatch]
rownames(curation(object)$tissue) <- new.ids[curMatch]
rownames(sampleInfo(object)) <- new.ids
return(object)
}
# updateFeatureNames <- function(object, new.ids=vector("character")){
#
# if (length(new.ids)!=nrow(sampleInfo(object))){
# stop("Wrong number of sample identifiers")
# }
#
# if(datasetType(object)=="sensitivity"|datasetType(object)=="both"){
# myx <- match(sensitivityInfo(object)[,"sampleid"],rownames(sampleInfo(object)))
# sensitivityInfo(object)[,"sampleid"] <- new.ids[myx]
#
# }
#
# molecularProfilesSlot(object) <- lapply(molecularProfilesSlot(object), function(eset){
#
# myx <- match(colData(eset)[["sampleid"]],rownames(sampleInfo(object)))
# colData(eset)[["sampleid"]] <- new.ids[myx]
# return(eset)
# })
# myx <- match(rownames(curation(object)$sample),rownames(sampleInfo(object)))
# rownames(curation(object)$sample) <- new.ids[myx]
# rownames(curation(object)$tissue) <- new.ids[myx]
# if (dim(pertNumber(object))[[1]]>0){
# myx <- match(dimnames(pertNumber(object))[[1]], rownames(sampleInfo(object)))
# dimnames(pertNumber(object))[[1]] <- new.ids[myx]
# }
# if (nrow(sensNumber(object))>0){
# myx <- match(rownames(sensNumber(object)), rownames(sampleInfo(object)))
# rownames(sensNumber(object)) <- new.ids[myx]
# }
# rownames(sampleInfo(object)) <- new.ids
# return(object)
#
# }
### TODO:: Add updating of sensitivity Number tables
#' Update the treatment ids in a cSet object
#'
#' @examples
#' updateTreatmentId(clevelandSmall_cSet, treatmentNames(clevelandSmall_cSet))
#'
#' @param object The object for which the treatment ids will be updated
#' @param new.ids The new ids to assign to the object
#'
#' @return `CoreSet` The modified CoreSet object
#'
#' @keywords internal
#' @importFrom S4Vectors endoapply
#' @importFrom SummarizedExperiment colData rowData
#' @export
updateTreatmentId <- function(object, new.ids = vector('character')){
if (nrow(treatmentInfo(object)) < 1) {
message("No treatments in this object! Returning without modification.")
return(object)
}
if (length(new.ids) != nrow(treatmentInfo(object))) {
stop('Wrong number of drug identifiers')
}
if (datasetType(object) == 'sensitivity' || datasetType(object) == 'both') {
myx <- match(sensitivityInfo(object)[, "treatmentid"], rownames(treatmentInfo(object)))
sensitivityInfo(object)[, "treatmentid"] <- new.ids[myx]
}
if (datasetType(object) == 'perturbation' || datasetType(object) == 'both') {
molecularProfilesSlot(object) <- lapply(molecularProfilesSlot(object),
function(SE) {
myx <- match(
SummarizedExperiment::colData(SE)[["treatmentid"]],
rownames(treatmentInfo(object))
)
SummarizedExperiment::colData(SE)[["treatmentid"]] <- new.ids[myx]
return(SE)
})
}
if (any(duplicated(new.ids))) {
warning('Duplicated ids passed to updateTreatmentId. Merging old ids ',
'into the same identifier')
if (ncol(sensNumber(object)) > 0){
sensMatch <- match(colnames(sensNumber(object)),
rownames(treatmentInfo(object)))
}
if (dim(pertNumber(object))[[2]] > 0) {
pertMatch <- match(dimnames(pertNumber(object))[[2]],
rownames(treatmentInfo(object)))
}
if ("treatment" %in% names(curation(object))) {
curMatch <- match(rownames(curation(object)$treatment),
rownames(treatmentInfo(object)))
}
duplId <- unique(new.ids[duplicated(new.ids)])
for(id in duplId) {
if (ncol(sensNumber(object))>0){
myx <- which(new.ids[sensMatch] == id)
sensNumber(object)[, myx[1]] <- apply(sensNumber(object)[, myx], 1, sum)
sensNumber(object) <- sensNumber(object)[, -myx[-1]]
# sensMatch <- sensMatch[-myx[-1]]
}
if (dim(pertNumber(object))[[2]] > 0) {
myx <- which(new.ids[pertMatch] == id)
pertNumber(object)[,myx[1],] <- apply(pertNumber(object)[,myx,],
c(1,3), sum)
pertNumber(object) <- pertNumber(object)[,-myx[-1], ]
# pertMatch <- pertMatch[-myx[-1]]
}
if ("treatment" %in% names(curation(object))) {
myx <- which(new.ids[curMatch] == id)
curation(object)$treatment[myx[1], ] <-
apply(curation(object)$treatment[myx, ], 2, paste,
collapse='///')
curation(object)$treatment <- curation(object)$treatment[-myx[-1], ]
# curMatch <- curMatch[-myx[-1]]
}
myx <- which(new.ids == id)
treatmentInfo(object)[myx[1],] <- apply(treatmentInfo(object)[myx,],
2, paste, collapse='///')
treatmentInfo(object) <- treatmentInfo(object)[-myx[-1], ]
new.ids <- new.ids[-myx[-1]]
if (ncol(sensNumber(object)) > 0) {
sensMatch <- match(colnames(sensNumber(object)),
rownames(treatmentInfo(object)))
}
if (dim(pertNumber(object))[[2]] > 0) {
pertMatch <- match(dimnames(pertNumber(object))[[2]],
rownames(treatmentInfo(object)))
}
if ("treatment" %in% names(curation(object))) {
curMatch <- match(rownames(curation(object)$treatment),
rownames(treatmentInfo(object)))
}
}
} else {
if (dim(pertNumber(object))[[2]]>0){
pertMatch <- match(dimnames(pertNumber(object))[[2]],
rownames(treatmentInfo(object)))
}
if (ncol(sensNumber(object))>0){
sensMatch <- match(colnames(sensNumber(object)),
rownames(treatmentInfo(object)))
}
if ("treatment" %in% names(curation(object))) {
curMatch <- match(rownames(curation(object)$treatment),
rownames(treatmentInfo(object)))
}
}
if (dim(pertNumber(object))[[2]]>0){
dimnames(pertNumber(object))[[2]] <- new.ids[pertMatch]
}
if (ncol(sensNumber(object))>0){
colnames(sensNumber(object)) <- new.ids[sensMatch]
}
if ("treatment" %in% names(curation(object))) {
rownames(curation(object)$treatment) <- new.ids[curMatch]
}
rownames(treatmentInfo(object)) <- new.ids
return(object)
}
.summarizeSensitivityNumbers <- function(object) {
if (datasetType(object) != "sensitivity" && datasetType(object) != "both") {
stop ("Data type must be either sensitivity or both")
}
## unique drug identifiers
# drugn <- sort(unique(treatmentResponse(object)$info[ , "treatmentid"]))
## consider all drugs
drugn <- rownames(treatmentInfo(object))
## unique drug identifiers
# samplen <- sort(unique(treatmentResponse(object)$info[ , "sampleid"]))
## consider all sample
samplen <- rownames(sampleInfo(object))
sensitivity.info <- matrix(0, nrow=length(samplen), ncol=length(drugn),
dimnames=list(samplen, drugn))
drugids <- sensitivityInfo(object)[, "treatmentid"]
sampleids <- sensitivityInfo(object)[, "sampleid"]
sampleids <- sampleids[grep("///", drugids, invert=TRUE)]
drugids <- drugids[grep("///", drugids, invert=TRUE)]
tt <- table(sampleids, drugids)
sensitivity.info[rownames(tt), colnames(tt)] <- tt
return(sensitivity.info)
}
#' @export
#' @keywords internal
.summarizeMolecularNumbers <- function(object) {
## consider all molecular types
mDT <- mDataNames(object)
## consider all sample lines
samplen <- rownames(sampleInfo(object))
molecular.info <- matrix(0, nrow=length(samplen), ncol=length(mDT),
dimnames=list(samplen, mDT))
for(mDataType in mDT) {
tt <- table(phenoInfo(object, mDataType)$sampleid)
molecular.info[names(tt), mDataType] <- tt
}
return(molecular.info)
}
#' @importFrom SummarizedExperiment colData rowData
.summarizePerturbationNumbers <- function(object) {
if (datasetType(object) != "perturbation" && datasetType(object) != "both") {
stop ("Data type must be either perturbation or both")
}
## consider all drugs
drugn <- rownames(treatmentInfo(object))
## consider all sample lines
samplen <- rownames(sampleInfo(object))
perturbation.info <- array(0, dim=c(length(samplen), length(drugn),
length(molecularProfilesSlot(object))),
dimnames=list(samplen, drugn, names((molecularProfilesSlot(object)))))
for (i in seq_len(length(molecularProfilesSlot(object)))) {
if (nrow(colData(molecularProfilesSlot(object)[[i]])) > 0 &&
all(is.element(c("sampleid", "treatmentid"),
colnames(colData(molecularProfilesSlot(object)[[i]]))))) {
tt <- table(colData(molecularProfilesSlot(object)[[i]])[ , "sampleid"],
colData(molecularProfilesSlot(object)[[i]])[ , "treatmentid"])
perturbation.info[rownames(tt), colnames(tt),
names(molecularProfilesSlot(object))[i]] <- tt
}
}
return(perturbation.info)
}
#' A function to verify the structure of a CoreSet
#'
#' This function checks the structure of a PharamcoSet, ensuring that the
#' correct annotations are in place and all the required slots are filled so
#' that matching of samples and drugs can be properly done across different types
#' of data and with other studies.
#'
#' @examples
#' checkCsetStructure(clevelandSmall_cSet)
#'
#' @param object A `CoreSet` to be verified
#' @param plotDist Should the function also plot the distribution of molecular
#' data?
#' @param result.dir The path to the directory for saving the plots as a string.
#' Defaults to this R sessions `tempdir()`.
#'
#' @return Prints out messages whenever describing the errors found in the
#' structure of the cSet object passed in.
#'
#' @export
#'
#' @md
#' @importFrom graphics hist
#' @importFrom grDevices dev.off pdf
#' @importFrom SummarizedExperiment assay rowData colData
#' @importFrom S4Vectors metadata
checkCsetStructure <- function(object, plotDist=FALSE, result.dir=tempdir()) {
msg <- c()
# Make directory to store results if it doesn't exist
if (!file.exists(result.dir) && plotDist) {
dir.create(result.dir, showWarnings=FALSE, recursive=TRUE)
}
####
## Checking molecularProfiles
####
for (i in seq_along(molecularProfilesSlot(object))) {
profile <- molecularProfilesSlot(object)[[i]]
nn <- names(molecularProfilesSlot(object))[i]
# Testing plot rendering for rna and rnaseq
if ((metadata(profile)$annotation == "rna" ||
metadata(profile)$annotation == "rnaseq") && plotDist) {
pdf(file=file.path(result.dir, sprintf("%s.pdf", nn)))
hist(assay(profile, 'exprs'), breaks=100)
dev.off()
}
## Test if sample and feature annotations dimensions match the assay
if (nrow(rowData(profile)) != nrow(assays(profile)$exprs)) {
msg <- c(msg, paste0(nn, " number of features in rowData is ",
"different from SummarizedExperiment slots"))
}
if (nrow(colData(profile)) != ncol(assays(profile)$exprs)) {
msg <- c(msg, paste0(nn, "number of samples in colData is ",
"different from expression slots", nn))
}
# Checking sample metadata for required columns
if (!("sampleid" %in% colnames(colData(profile)))) {
msg <- c(msg, paste0(nn, " sampleid does not exist in colData ",
"(samples) columns"))
}
if (!("batchid" %in% colnames(colData(profile)))) {
msg <- c(msg, sprintf(nn, " batchid does not exist in colData ",
"(samples) columns"))
}
# Checking mDataType of the SummarizedExperiment for required columns
if (metadata(profile)$annotation == "rna" ||
metadata(profile)$annotation == "rnaseq") {
if (!("BEST" %in% colnames(rowData(profile)))) {
msg <- c(msg, paste0(nn, " BEST does not exist in rowData ",
"(features) columns"))
}
if (!("Symbol" %in% colnames(rowData(profile)))) {
msg <- c(msg, paste0(nn, " Symbol does not exist in rowData ",
"(features) columns"))
}
}
# Check that all sampleids from the cSet are included in molecularProfiles
if ("sampleid" %in% colnames(rowData(profile))) {
if (!all(colData(profile)[, "sampleid"] %in% rownames(sampleInfo(object)))) {
msg <- c(msg, paste0(nn, " not all the sample lines in this ",
"profile are in sample lines slot"))
}
} else {
msg <- c(msg, paste0(nn, " sampleid does not exist in colData ",
"(samples)"))
}
}
#####
# Checking sample
#####
if ("tissueid" %in% colnames(sampleInfo(object))) {
if ("unique.tissueid" %in% colnames(curation(object)$tissue)) {
if (length(intersect(rownames(curation(object)$tissue),
rownames(sampleInfo(object)))) != nrow(sampleInfo(object))) {
msg <- c(msg, paste0("rownames of curation tissue slot should",
" be the same as sample slot (curated sample ids)"))
} else {
if (length(intersect(sampleInfo(object)$tissueid,
curation(object)$tissue$unique.tissueid)) !=
length(table(sampleInfo(object)$tissueid))) {
msg <- c(msg, paste0("tissueid should be the same as unique",
" tissue id from tissue curation slot"))
}
}
} else {
msg <- c(msg, paste0("unique.tissueid which is curated tissue id",
" across data set should be a column of tissue curation slot"))
}
if (any(is.na(sampleInfo(object)[,"tissueid"]) |
sampleInfo(object)[, "tissueid"] == "", na.rm=TRUE)) {
msg <- c(msg, paste0(
"There is no tissue type for these samples",
paste(
rownames(sampleInfo(object))[
which(is.na(sampleInfo(object)[,"tissueid"]) |
sampleInfo(object)[,"tissueid"] == "")
],
collapse=" ")))
}
} else {
msg <- c(msg, "tissueid does not exist in sample slot")
}
if("unique.sampleid" %in% colnames(curation(object)$sample)) {
if (length(intersect(curation(object)$sample$unique.sampleid,
rownames(sampleInfo(object)))) != nrow(sampleInfo(object))) {
msg <- c(msg, "rownames of sample slot should be curated sample ids")
}
} else {
msg <- c(msg, paste0("unique.sampleid which is curated sample id across",
" data set should be a column of sample curation slot"))
}
if (length(intersect(rownames(curation(object)$sample),
rownames(sampleInfo(object)))) != nrow(sampleInfo(object))) {
msg <- c(msg, paste0("rownames of curation sample slot should be the",
" same as sample slot (curated sample ids)"))
}
if (!is(sampleInfo(object), "data.frame")) {
msg <- c(msg, "sample slot class type should be dataframe")
}
if (length(msg)) return(paste0(msg, collapse="\n")) else TRUE
}
#' @importFrom MultiAssayExperiment MultiAssayExperiment experiments
#' @importFrom S4Vectors List
#' @importFrom BiocGenerics %in% match
.checkMolecularProfiles <- function(object) {
msg <- character()
# ---- Make a MutliAssayExperiment, if it isn't one already
molecProf <- molecularProfilesSlot(object)
isSummarizedExperiment <- all(as(lapply(experiments(molecProf), is,
'SummarizedExperiment'), 'List'))
if (!all(isSummarizedExperiment)) {
nmsg <- .formatMessage('All molecular profiles must be stored as
SummarizedExperiment objects. The following are not ',
paste(names(which(!isSummarizedExperiment)), collapse=', '))
msg <- c(msg, nmsg)
}
tryCatch({
MAE <- if (is(molecProf, 'MultiAssayExperiment')) molecProf else
MultiAssayExperiment(molecProf)
}, error=function(e) msg <- c(msg, paste0('Failed coercing to
MultiAssayExperiment: ', as.character(e))))
# ---- Check for correct metadata columns
# -- sample identifiers
colDataL <- lapply(experiments(MAE), FUN=colData)
colColNameL <- as(lapply(colDataL, FUN=colnames), 'List')
hasSampleId <- any(colColNameL %in% 'sampleid')
if (!all(hasSampleId)) {
nmsg <- .formatMessage('All SummarizedExperiments must have a sampleid
column. This is not the case for ',
paste(names(which(!hasSampleId)), collapse=', '), '!')
msg <- c(msg, nmsg)
}
hasBatchId <- any(colColNameL %in% 'batchid')
if (!all(hasBatchId)) {
nmsg <- .formatMessage('All SummarizedExpeirments must have a batchid
column. This is not the case for ',
paste(names(which(!hasBatchId)), collapse=', '), '!')
msg <- c(msg, nmsg)
}
# -- feature identifiers
rowDataL <- lapply(experiments(MAE), FUN=rowData)
rowColNameL <- as(lapply(rowDataL, colnames), 'List')
# hasGeneId <- rowColNameL %in% 'geneid'
hasSymbol <- rowColNameL %in% 'Symbol'
hasBEST <- rowColNameL %in% 'BEST'
# hasEnsemblId <- rowColNamesL %in% 'ensemblid'
# ---- Check all samples are in the @sample slot
samples <- sampleNames(object)
sampleIdL <- as(lapply(colDataL, `[[`, i='sampleid'), 'List')
hasValidSamples <- sampleIdL %in% samples
if (!all(all(hasValidSamples))) {
nmsg <- .formatMessage('All sampleids in the @molecularProfiles slot
must also be in the @sample slot. This is not the case
for ', paste(names(which(all(hasValidSamples))), collapse=', '))
msg <- c(msg, nmsg)
}
# ---- Return messages if something is wrong, or TRUE if everything is good
return(if (length(msg)) msg else TRUE)
}
.checkTreatmentResponse <- function(object) {
msg <- character()
# ---- Extract sensitivity data
samples <- sampleNames(object)
sensSlot <- treatmentResponse(object)
if (!is(sensSlot, "TreatmentResponseExperiment")) {
nmsg <- "The treatmentReponse parameter must be a
TreatmentResponseExperiment!"
msg <- c(msg, nmsg)
return(msg)
}
return(if (length(msg)) msg else TRUE)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.