## Utility function for the Gx suite packages ------------------------------
## FIXME:: Put these functions in sections based on similar purposes
# ExpressionSet to SummarizedExperiment -----------------------------------
#' CSet molecularProfiles from ESets to SEs
#'
#' Converts all ExpressionSet objects within the molecularProfiles slot of a
#' CoreSet to SummarizedExperiments
#'
#' @param cSet \code{S4} A CoreSet containing molecular data in ExpressionSets
#'
#' @return \code{S4} A CoreSet containing molecular data in a
#' SummarizedExperiments
#'
#' @importFrom BiocParallel bplapply
#' @importFrom SummarizedExperiment SummarizedExperiment Assays assay
#' assayNames assayNames<-
#' @importFrom Biobase exprs fData pData annotation protocolData
#' assayDataElementNames
#' @importFrom S4Vectors SimpleList DataFrame
#' @importFrom stats setNames
#' @keywords internal
.convertCSetMolecularProfilesToSE <- function(cSet) {
eSets <- molecularProfilesSlot(cSet) # Extract eSet data
molecularProfilesSlot(cSet) <- lapply(eSets, function(eSet) {
# Change rownames from probes to EnsemblGeneId for rna data type
if (grepl("^rna$", Biobase::annotation(eSet))) {
rownames(eSet) <- Biobase::fData(eSet)$EnsemblGeneId
}
# Build summarized experiment from eSet TODO:: Do we want to pass an environment for better memory efficiency?
SE <- SummarizedExperiment::SummarizedExperiment(assays = SimpleList(as.list(Biobase::assayData(eSet))), rowData = S4Vectors::DataFrame(Biobase::fData(eSet),
rownames = rownames(Biobase::fData(eSet))), colData = S4Vectors::DataFrame(Biobase::pData(eSet), rownames = rownames(Biobase::pData(eSet))),
metadata = list(experimentData = eSet@experimentData, annotation = Biobase::annotation(eSet), protocolData = Biobase::protocolData(eSet)))
## TODO:: Determine if this can be done in the SE constructor? Extract names from expression set
assayNames(SE) <- assayDataElementNames(eSet)
# Assign SE to cSet
mDataType <- Biobase::annotation(eSet)
molecularProfilesSlot(cSet)[[mDataType]] <- SE
})
setNames(cSet@molecularProfiles, names(eSets))
cSet
}
# sanityCheck -------------------------------------------------------------
## TODO:: Add documentation!
#' @export
#' @noRd
.sanitizeInput <- function(x, y, lower, upper, pars, x_as_log, y_as_log,
y_as_pct, trunc, verbose = FALSE) {
# Set to 2 to see debug printouts
if (!is.logical(x_as_log)) {
if (verbose == 2) {
message("x_as_log:")
message(x_as_log)
}
stop("'x_as_log' is not a logical.")
}
if (!is.logical(y_as_log)) {
if (verbose == 2) {
message("y_as_log:")
message(y_as_log)
}
stop("'y_as_log' is not a logical.")
}
if (!is.logical(y_as_pct)) {
if (verbose == 2) {
message("y_as_pct:")
message(y_as_pct)
}
stop("'y_as_pct' is not a logical.")
}
if (!is.logical(trunc)) {
if (verbose == 2) {
message("trunc:")
message(trunc)
}
stop("'trunc' is not a logical.")
}
if (y_as_pct && y_as_log) {
if (verbose == 2) {
message("y_as_pct:")
message(y_as_pct)
message("y_as_log:")
message(y_as_log)
}
warning("y_as_pct and y_as_log flags should almost certainly not both be TRUE.")
}
if (!(verbose %in% c(0, 1, 2))) {
message("verbose:") #can't have the if(verbose == 2) statement here since verbose itself is the problem!
message(verbose)
stop("'verbose' flag is not set correctly.")
}
if (!missing(x)) {
if (!all(is.finite(x) | is.na(x)) || (x_as_log && any(x == -Inf))) {
if (verbose == 2) {
message("x:")
message(x)
}
stop("x must contain only real numbers, NA-values, and/or -Inf (if x_as_log flag is set to TRUE).")
}
if (x_as_log == FALSE && min(x) < 0) {
if (verbose == 2) {
message("x:")
message(x)
message("x_as_log:")
message(x_as_log)
}
stop("Negative x-values encountered. Data may be inappropriate, or 'x_as_log' flag may be set incorrectly.")
}
if (length(unique(x)) < 3) {
stop("Please pass in at least 3 unique dose points.")
}
}
if (missing(y)) {
if (missing(pars)) {
stop("Both 'pars' and 'y' missing, please pass in some data!")
} else {
if (pars[[1]] < 0 || pars[[2]] < 0) {
# HS or alpha
if (verbose == 2) {
message("pars:")
message(pars)
}
warning("Curve parameters may be inappropriately set to negative values.")
}
if (length(pars) == 3) {
# and thus we are in PharmacoGx
if (x_as_log == FALSE && pars[[3]] < 0) {
message("pars:")
message(pars[[3]])
message("x_as_log:")
message(x_as_log)
stop("'x_as_log' flag may be set incorrectly, as the EC50 is negative when a positive value is expected.")
}
if (y_as_pct == FALSE) {
if (pars[[2]] > 1) {
if (verbose == 2) {
message("pars:")
message(pars[[2]])
message("y_as_pct:")
message(y_as_pct)
}
warning("Warning: 'y_as_pct' flag may be set incorrectly.")
}
}
} else if (length(pars) == 2) {
if (pars[[1]] < pars[[2]]) {
if (verbose) {
warning("Alpha is greater than beta.")
if (verbose == 2) {
message("pars:")
message(pars)
}
}
}
} else {
stop("Pars does not have the correct length.")
}
}
} else {
if (!all(is.finite(y) | is.na(y)) || (y_as_log && any(y == -Inf))) {
if (verbose == 2) {
message("y:")
message(y)
}
stop("y must contain only real numbers, NA-values, and/or -Inf (if y_as_log is set to TRUE).")
}
if (min(y, na.rm=TRUE) < 0) {
if (verbose) {
warning("Warning: Negative y data.")
if (verbose == 2) {
message("y:")
message(y)
}
}
}
if (max(y, na.rm=TRUE) > (1 + 99 * y_as_pct)) {
if (verbose) {
warning("Warning: y data exceeds negative control.")
if (verbose == 2) {
message("y:")
message(y)
}
}
}
if (missing(pars)) {
if (y_as_log == FALSE && min(y, na.rm=TRUE) < 0) {
if (verbose) {
warning("Negative y-values encountered. y data may be inappropriate, or 'y_as_log' flag may be set incorrectly.")
if (verbose == 2) {
message("y:")
message(y)
message("y_as_log:")
message(y_as_log)
}
}
}
if (y_as_pct == TRUE && max(y, na.rm=TRUE) < 5) {
if (verbose) {
warning("Warning: 'y_as_pct' flag may be set incorrectly.")
if (verbose == 2) {
message("y:")
message(y)
message("y_as_pct:")
message(y_as_pct)
}
}
}
if (y_as_pct == FALSE && max(y, na.rm=TRUE) > 5) {
if (verbose) {
warning("Warning: 'y_as_pct' flag may be set incorrectly.")
if (verbose == 2) {
message("y:")
message(y)
message("y_as_pct:")
message(y_as_pct)
}
}
}
if (!missing(x) && length(x) != length(y)) {
if (verbose == 2) {
message("x:")
message(x)
message("y:")
message(y)
}
stop("Vector of x-values is not of same length as vector of y-values.")
}
} else {
stop("Please pass in only one of 'pars' and 'y', as it is unclear which to use in the computation.")
}
}
if (!missing(lower) && !missing(upper)) {
if (!(is.double(lower))) {
if (verbose == 2) {
message("lower:")
message(lower)
}
stop("The lower bound must be a positive real number.")
}
if (!(is.double(lower))) {
if (verbose == 2) {
message("upper:")
message(upper)
}
stop("The upper bound must be a positive real number.")
}
if (lower >= upper) {
if (verbose == 2) {
message("lower:")
message(lower)
message("upper:")
message(upper)
}
stop("The lower bound of the range of allowed x-values must be less than the upper bound.")
}
if (lower < 0) {
if (verbose == 2) {
message("lower:")
message(lower)
}
stop("The lower bound of the range of allowed x-values must be nonnegative.")
}
if (upper < 0) {
if (verbose == 2) {
message("upper:")
message(upper)
}
stop("The upper bound of the range of allowed x-values must be nonnegative.")
}
}
}
# getSupportVec -----------------------------------------------------------
## get vector of interpolated concentrations for graphing purposes
#' .getSupportVec
#'
#' @param x An input vector of dosages
#' @param output_length The length of the returned support vector
#'
#' @return \code{numeric} A numeric vector of interpolated concentrations
#'
#' @export
#' @noRd
.getSupportVec <- function(x, output_length = 1001) {
return(seq(from = min(x), to = max(x), length.out = output_length))
}
#### reformatData ------------------------------------------------------------
#' @export
#' @noRd
.reformatData <- function(x, y, pars, x_to_log, y_to_log, y_to_frac, trunc) {
if (!(is.logical(x_to_log))) {
stop("x_to_log must be a logical.")
}
if (!(is.logical(y_to_log))) {
stop("y_to_log must be a logical.")
}
if (!(is.logical(y_to_frac))) {
stop("y_to_frac must be a logical.")
}
if(y_to_log && y_to_frac){
warning("Both y_to_log and y_as_frac set. Will first convert to fraction and then take the logarithm.\n
If this is not what is intended, please reformat data prior to curve fitting. ")
}
if (x_to_log) {
x <- log10(x)
}
### Note, if Y is passed in, it is sorted in this same order below. This is not obvious from the code right away.
if (is.unsorted(x, na.rm=TRUE)) {
InputUnsorted <- TRUE
warning("x-values passed in unsorted. Sorting x-values and corresponding y-values (if passed in).")
xOrder <- order(x)
x <- x[xOrder]
} else {
InputUnsorted <- FALSE
}
if (!missing(y)) {
if (InputUnsorted) {
y <- y[xOrder]
}
if (any(is.na(x) & (!is.na(y)))) {
warning("Missing x-values with non-missing y-values encountered. Removed y-values correspoding to those x-values.")
myx <- !is.na(x)
x <- as.numeric(x[myx])
y <- as.numeric(y[myx])
}
if (any((!is.na(x)) & is.na(y))) {
warning("Missing y-values with non-missing x-values encountered. Removed x values correspoding to those y-values.")
myy <- !is.na(y)
x <- as.numeric(x[myy])
y <- as.numeric(y[myy])
}
myxy <- complete.cases(x,y)
x <- x[myxy]
y <- y[myxy]
if (y_to_frac) {
y <- y/100
}
if (trunc) {
y = pmin(as.numeric(y), 1)
y = pmax(as.numeric(y), 0)
}
if (x_to_log) {
x0s <- which(x == -Inf)
if (length(x0s) > 0) {
x <- x[-x0s]
y <- y[-x0s]
}
}
if (y_to_log) {
if (any(y <= 0)) {
warning("Transforming y to log with non-positive y values present, therefore removing.")
x <- x[y > 0]
y <- y[y > 0]
if (!length(x)) {
stop("No valid positive y values encountered, please pass in some data.")
}
}
y <- log(y)
}
if (length(unique(x)) < 3) {
stop("Less than 3 unique dose points left after cleaning data, please pass in enough valid measurements.")
}
return(list(x = x, y = y))
}
if (!missing(pars)) {
if (x_to_log && length(pars) == 3) {
pars[[3]] <- log10(pars[[3]])
}
if (y_to_frac && length(pars) == 3) {
pars[[2]] <- pars[[2]]/100
}
return(list(x = x, pars = pars))
}
}
# multinom ----------------------------------------------------------------
#' @export
#' @noRd
.multinom <- function(x, y) {
coeff <- 1
for (i in seq_len(length(y))) {
coeff <- coeff * choose(x, y[i])
x <- x - y[i]
}
return(coeff)
}
# medncauchys -------------------------------------------------------------
## TODO:: Add documentation to these functions
#' A random sample distributed as the median of N Cauchy distributed variables
#'
#' Naming follows R conventions.
#'
#' @param N How many samples to sample
#' @param n The number of Cauchy distributions to take the median of
#' @param scale the scale of the Cauchy distribution.
#'
#' @importFrom stats rcauchy
#' @export
#' @keywords internal
#' @noRd
.rmedncauchys <- function(N, n, scale) {
x <- matrix(NA, nrow = 1, ncol = N)
for (i in seq_len(N)) {
x[i] <- median(rcauchy(n, scale = scale))
}
return(x)
}
#' PDF of the median of N Cauchy distributed variables
#'
#' This function calculates the PDF/density for a variable distributed as the median value of n IID Cauchy variables. Naming follows R conventions.
#'
#' @param x Where to evaluate the density function
#' @param n The number of Cauchy distributions to take the median of
#' @param scale the scale of the Cauchy distribution.
#' @param divisions How many maximum divisions to use in numerical integration
#'
#' @importFrom stats dcauchy pcauchy integrate
#' @export
#' @keywords internal
#' @noRd
.dmedncauchys = function(x, n, scale, divisions = 100) {
n <- rep(n, times = length(x)/length(n))
scale <- rep(scale, times = length(x)/length(scale))
y <- matrix(NA, nrow = 1, ncol = length(x))
for (g in seq_along(x)) {
if (n[g]%%2 == 0) {
y[g] <- 2 * .multinom(n[g], c(n[g]/2 - 1, n[g]/2 - 1)) * tryCatch(integrate(f = function(j) {
(pcauchy(x[g] - j/2, scale = scale[g]))^(n[g]/2 - 1) * (1 - pcauchy(x[g] + j/2, scale = scale[g]))^(n[g]/2 - 1) * dcauchy(x[g] -
j/2, scale = scale[g]) * dcauchy(x[g] + j/2, scale = scale[g])
}, lower = 0, upper = Inf, subdivisions = divisions)[[1]], error = function(e) {
if (divisions == 1) {
wseq <- c(1, 4, 1)
} else {
wseq <- c(1, 4, rep(c(2, 4), times = divisions - 1), 1)
}
aseq <- seq(from = 0, to = pi/2, length.out = 2 * divisions + 1)
tseq <- tan(aseq)/2
return(sum((pcauchy(x[g] + tseq, scale = scale[g]))^(n[g]/2 - 1) * (pcauchy(x[g] - tseq, scale = scale[g]))^(n[g]/2 - 1) *
dcauchy(x[g] + tseq, scale = scale[g]) * dcauchy(x[g] - tseq, scale = scale[g])/(cos(aseq))^2 * wseq) * (aseq[2] - aseq[1])/6)
})
} else {
y[g] <- .multinom(n[g], c((n[g] - 1)/2, (n[g] - 1)/2)) * (pcauchy(x[g], scale = scale[g]))^((n[g] - 1)/2) * (1 - pcauchy(x[g],
scale = scale[g]))^((n[g] - 1)/2) * dcauchy(x[g], scale = scale[g])
}
}
return(y)
}
#' CDF of the median of N Cauchy distributed variables
#'
#' This function calculates the CDF/distribution for a variable distributed as the median value of n IID Cauchy variables. Naming follows R conventions.
#'
#' @param x Where to evaluate the distribution function
#' @param n The number of Cauchy distributions to take the median of
#' @param scale the scale of the Cauchy distribution.
#' @param divisions How many maximum divisions to use in numerical integration
#'
#' @importFrom stats pcauchy integrate
#' @export
#' @keywords internal
#' @noRd
.pmedncauchys = function(x, n, scale, divisions = 100) {
n <- rep(n, times = length(x)/length(n))
scale <- rep(scale, times = length(x)/length(scale))
y <- integer(length(x))
for (g in seq_along(x)) {
if (n[g] %% 2 == 0) {
y[g] <- tryCatch(integrate(f = function(k) {
.dmedncauchys(k, n[g], scale[g])
}, lower = -Inf, upper = x[g], subdivisions = divisions)[[1]], error = function(e) {
wseq <- c(1, 4, rep(c(2, 4), times = divisions - 1), 1)
aseq <- seq(from = -pi/2, to = atan(x[g]), length.out = 2 * divisions + 1)
return(sum(.dmedncauchys(tan(aseq), n[g], scale[g]) * wseq/(cos(aseq))^2) * (aseq[3] - aseq[1])/6)
})
} else {
y[g] <- 0
Fx <- pcauchy(x[g], scale = scale[g])
for (i in 0:((n[g] - 1)/2)) {
y[g] <- y[g] + choose((n[g] - 1)/2, i) * (-1)^i * Fx^((n[g] + 1)/2 + i)/((n[g] + 1)/2 + i)
}
y[g] <- y[g] * .multinom(n[g], c((n[g] - 1)/2, (n[g] - 1)/2))
}
}
return(y)
}
#' Expectation of the likelihood of the median of N Cauchy distributions for
#' truncated data
#'
#' This function calculates the expected value of the PDF of a median of N
#' Cauchy with given scale parameter, calculated over the region from x to
#' infinity if x>0, and -infinity to x otherwise.
#'
#' This is used in curve fitting when data has been truncated. Since for
#' truncated data, we don't know what the "real" value was, the reasoning is
#' we take the expected value.
#'
#' This increases robustness to extreme outliers while not completely ignoring
#' the fact that points are truncated, and seems to work well in practice. The
#' name of the function follows:
#' e(xpectation)d(istribution)med(ian)ncauchys - following R conventions.
#'
#' @param x Where the truncation occurred
#' @param n The number of Cauchy distributions to take the median of
#' @param scale the scale of the Cauchy distribution.
#' @param divisions How many maximum divisions to use in numerical integration
#'
#' @importFrom stats integrate
#' @keywords internal
#' @export
#' @noRd
.edmedncauchys = function(x, n, scale, divisions = 100) {
n <- rep(n, times = length(x)/length(n))
scale <- rep(scale, times = length(x)/length(scale))
y <- numeric(length(x))
for (g in seq_along(y)) {
if (x[g] > 0) {
upper <- Inf
lower <- x[g]
} else {
upper <- x[g]
lower <- -Inf
}
y[g] <- tryCatch(integrate(f = function(k) {
(.dmedncauchys(k, n[g], scale[g]))^2
}, lower = lower, upper = upper, subdivisions = divisions)[[1]], error = function(e) {
wseq <- c(1, 4, rep(c(2, 4), times = divisions - 1), 1)
aseq <- seq(from = atan(lower), to = atan(upper), length.out = 2 * divisions + 1)
return(sum((.dmedncauchys(tan(aseq), n[g], scale[g]))^2 * wseq/(cos(aseq))^2) * (aseq[3] - aseq[1])/6)
})
}
return(y)
}
#### mednnormals -------------------------------------------------------------
#' A random sample distributed as the median of N Normally distributed variables
#'
#' Naming follows R conventions.
#'
#' @param N How many samples to sample
#' @param n The number of normal distributions to take the median of
#' @param scale the SD of the normal distribution.
#'
#' @export
#' @keywords internal
#' @noRd
.rmednnormals = function(N, n, scale) {
x <- matrix(NA, nrow = 1, ncol = N)
for (i in seq_len(N)) {
x[i] <- median(rnorm(n, sd = scale))
}
return(x)
}
#' PDF of the median of N Normally distributed variables
#'
#' This function calculates the PDF/density for a variable distributed as the median value of n IID Normal variables. Naming follows R conventions.
#'
#' @param x where to evaluate the density
#' @param n The number of normal distributions to take the median of
#' @param scale the SD of the normal distribution.
#' @param divisions How many maximum divisions to use in numerical integration
#'
#' @importFrom stats rnorm dnorm
#' @export
#' @keywords internal
#' @noRd
.dmednnormals = function(x, n, scale, divisions = 100) {
n <- rep(n, times = length(x)/length(n))
scale <- rep(scale, times = length(x)/length(scale))
y <- matrix(NA, nrow = 1, ncol = length(x))
for (g in seq_along(x)) {
if (n[g]%%2 == 0) {
y[g] <- 2 * .multinom(n[g], c(n[g]/2 - 1, n[g]/2 - 1)) * tryCatch(integrate(f = function(j) {
(pnorm(x[g] - j/2, sd = scale[g]))^(n[g]/2 - 1) * (1 - pnorm(x[g] + j/2, sd = scale[g]))^(n[g]/2 - 1) * dnorm(x[g] - j/2,
sd = scale[g]) * dnorm(x[g] + j/2, sd = scale[g])
}, lower = 0, upper = Inf, subdivisions = divisions)[[1]], error = function(e) {
if (divisions == 1) {
wseq <- c(1, 4, 1)
} else {
wseq <- c(1, 4, rep(c(2, 4), times = divisions - 1), 1)
}
aseq <- seq(from = 0, to = pi/2, length.out = 2 * divisions + 1)
tseq <- tan(aseq)/2
return(sum((pnorm(x[g] + tseq, sd = scale[g]))^(n[g]/2 - 1) * (pnorm(x[g] - tseq, sd = scale[g]))^(n[g]/2 - 1) * dnorm(x[g] +
tseq, sd = scale[g]) * dnorm(x[g] - tseq, sd = scale[g])/(cos(aseq))^2 * wseq) * (aseq[2] - aseq[1])/6)
})
} else {
if(n[g]==1){
y[g] <- dnorm(x[g], sd = scale[g]) ## This reduces to the simple case for n equals 1 below, but we can save many calls to pnorm, which just get raised to a power of 0.
} else {
y[g] <- .multinom(n[g], c((n[g] - 1)/2, (n[g] - 1)/2)) * (pnorm(x[g], sd = scale[g]))^((n[g] - 1)/2) * (1 - pnorm(x[g], sd = scale[g]))^((n[g] -
1)/2) * dnorm(x[g], sd = scale[g])
}
}
}
return(y)
}
#' CDF of the median of N Normally distributed variables
#'
#' This function calculates the CDF/distribution for a variable distributed as the median value of n IID Normal variables. Naming follows R conventions.
#'
#' @param x Where to evaluate the Distribution
#' @param n The number of normal distributions to take the median of
#' @param scale the SD of the normal distribution.
#' @param divisions How many maximum divisions to use in numerical integration
#'
#' @importFrom stats integrate
#' @export
#' @keywords internal
#' @noRd
.pmednnormals = function(x, n, scale, divisions = 100) {
n <- rep(n, times = length(x)/length(n))
scale <- rep(scale, times = length(x)/length(scale))
y <- numeric(length(x))
for (g in seq_along(x)) {
if (n[g]%%2 == 0) {
y[g] <- tryCatch(integrate(f = function(k) {
.dmednnormals(k, n[g], scale[g])
}, lower = -Inf, upper = x[g], subdivisions = divisions)[[1]], error = function(e) {
wseq <- c(1, 4, rep(c(2, 4), times = divisions - 1), 1)
aseq <- seq(from = -pi/2, to = atan(x[g]), length.out = 2 * divisions + 1)
return(sum(.dmednnormals(tan(aseq), n[g], scale[g]) * wseq/(cos(aseq))^2) * (aseq[3] - aseq[1])/6)
})
} else {
y[g] <- 0
Fx <- pnorm(x[g], sd = scale[g])
for (i in 0:((n[g] - 1)/2)) {
y[g] <- y[g] + choose((n[g] - 1)/2, i) * (-1)^i * Fx^((n[g] + 1)/2 + i)/((n[g] + 1)/2 + i)
}
y[g] <- y[g] * .multinom(n[g], c((n[g] - 1)/2, (n[g] - 1)/2))
}
}
return(y)
}
#' Expectation of the likelihood of the median of N normal distributions for truncated data
#'
#' This function calculates the expected value of the PDF of a median of N normals with SD=scale, calculated over the region from x to infinity if x>0, and -infinity to x otherwise.
#' This is used in curve fitting when data has been truncated. Since for truncated data, we don't know what the "real" value was, the reasoning is we take the expected value.
#' This increases robustness to extreme outliers while not completely ignoring the fact that points are truncated, and seems to work well in practice. The name of the function follows:
#' e(xpectation)d(istribution)med(ian)nnormals - following R conventions.
#'
#' @param x Where the truncation occurred
#' @param n The number of normal distributions to take the median of
#' @param scale the SD of the normal distribution.
#' @param divisions How many maximum divisions to use in numerical integration
#'
#' @importFrom stats integrate
#' @export
#' @keywords internal
#' @noRd
.edmednnormals = function(x, n, scale, divisions = 100) {
n <- rep(n, times = length(x)/length(n))
scale <- rep(scale, times = length(x)/length(scale))
y <- numeric(length(x))
for (g in seq_along(y)) {
if(n[g]==1){ ## The n=1 case is called very often, and there are significant savings (20x) to not calling numerical integration.
if(x[g]>0){
pnorm(x[g], sd=scale[g]/sqrt(2), lower.tail = FALSE)/(scale*2*sqrt(pi))
} else {
pnorm(x[g], sd=scale[g]/sqrt(2), lower.tail = TRUE)/(scale*2*sqrt(pi))
}
} else {
if (x[g] > 0) {
upper <- Inf
lower <- x[g]
} else {
upper <- x[g]
lower <- -Inf
}
y[g] <- tryCatch(integrate(f = function(k) {
(.dmednnormals(k, n[g], scale[g]))^2
}, lower = lower, upper = upper, subdivisions = divisions)[[1]], error = function(e) {
wseq <- c(1, 4, rep(c(2, 4), times = divisions - 1), 1)
aseq <- seq(from = atan(lower), to = atan(upper), length.out = 2 * divisions + 1)
return(sum((.dmednnormals(tan(aseq), n[g], scale[g]))^2 * wseq/(cos(aseq))^2) * (aseq[3] - aseq[1])/6)
})
}
}
return(y)
}
# Set Operations ----------------------------------------------------------
## TODO:: Can we implement this as an extension of the BiocGenerics::setdiff?
#' Utility to find the symmetric set difference of a list of two or more
#' vectors or lists
#'
#' The function finds the symmetric set differnces between all the arguments,
#' defined as Union(args)-Intersection(args)
#'
#' @examples
#' list1 <- list('a', 'b', 'c')
#' list2 <- list('a', 'c')
#' list3 <- list('a', 'c', 'd')
#' listAll <- .symSetDiffList(list1, list2, list3)
#' listAll
#'
#' @param ... A list of or any number of vector like objects of the same mode,
#' which could also be operated on by the native R set operations
#'
#' @return A vector like object of the same mode as the first argument,
#' containing only the symmetric set difference
#'
#' @export
#' @keywords internal
.symSetDiffList <- function(...) {
return(setdiff(.unionList(...), .intersectList(...)))
}
## FIXME:: This should be implemented as an extension of the intersect generic provided in the BiocGenerics package!
#' Intersect A List of More Than Two Vectors
#'
#' Utility to find the intersection between a list of more than two vectors or
#' lists This function extends the native intersect function to work on two
#' or more arguments.
#'
#' @examples
#' list1 <- list('a', 'b', 'c')
#' list2 <- list('a', 'c')
#' list3 <- list('a', 'c', 'd')
#' listAll <- .intersectList(list1, list2, list3)
#' listAll
#'
#' @param ... A list of or any number of vector like objects of the same mode,
#' which could also be operated on by the native R set operations
#'
#' @return A vector like object of the same mode as the first argument,
#' containing only the intersection common to all arguments to the function
#'
#' @export
#' @keywords internal
.intersectList <- function(...) {
args <- list(...)
nargs <- length(args)
if (nargs == 0) {
return(args)
}
if (nargs == 1) {
if (nargs == 1 && is.list(args[[1]])) {
do.call(".intersectList", args[[1]])
} else {
return(args[[1]])
}
} else if (nargs == 2) {
return(intersect(args[[1]], args[[2]]))
} else {
return(intersect(args[[1]], .intersectList(args[-1])))
}
}
## FIXME:: This should be implemented as an extension of the union generic from BiocGenerics
#' Utility to find the union between a list of more than two vectors or
#' lists
#'
#' This function extends the native union function to work on two or more
#' arguments.
#'
#' @examples
#' list1 <- list('a', 'b')
#' list2 <- list('a', 'c')
#' list3 <- list('c', 'd')
#' listAll <- .unionList(list1, list2, list3)
#' listAll
#'
#' @param ... A list of or any number of vector like objects of the same mode,
#' which could also be operated on by the native R set operations
#'
#' @return A vector like object of the same mode as the first argument,
#' containing all the elements of all arguments passed to the function
#'
#' @export
#' @keywords internal
.unionList <- function(...) {
args <- list(...)
nargs <- length(args)
return(unique(unlist(do.call(c, args))))
}
#' @param matInd array indices
#' @param dimsizes array containing size of array of interest in each dimension
#'
#' @export
#' @keywords internal
#' @noRd
.linInd <- function(matInd, dimsizes) {
y <- matInd[1]
if (length(dimsizes) > 1) {
for (i in seq(2, length(dimsizes))) {
y <- y + (matInd[i] - 1) * prod(dimsizes[seq_len(i - 1)])
}
}
return(y)
}
#' @export
#' @keywords internal
#' @noRd
# @param linInd linear index @param dimsizes array containing size of array of interest in each dimension
.matInd <- function(linInd, dimsizes) {
y <- matrix(0, nrow = length(dimsizes), ncol = 1)
if (NROW(y) > 1) {
for (i in seq(2, length(dimsizes))) {
y[i] <- ceiling(linInd/prod(dimsizes[seq_len(i - 1)]))
linInd <- linInd - (y[i] - 1) * prod(dimsizes[seq_len(i - 1)])
}
}
y[1] <- linInd
return(y)
}
# Not Used? ------------------------------------------------------------------
### TODO:: Determine type of objects intended for this function
#' Getter for attributes of an object
#'
#' @param pars The object for which attributes are to be returned
#' @return A named vector where index `Rsquare` contains the attributes of the object
#' @export
#' @keywords internal
#' @noRd
.examineGOF <- function(pars) {
return(c(Rsquare = attr(pars, "Rsquare")))
}
# Different in PharmacoGx? ------------------------------------------------
## FIXME:: This function already exists as base::trimws? Is there any reason we need to reimplement it?
#' @export
#' @keywords internal
#' @noRd
.stripWhiteSpace <- function(str, method = c("both", "head", "tail")) {
method <- match.arg(method)
str2 <- NULL
if (length(str) == 1) {
switch(method, both = {
str2 <- gsub("^[ \t]+", "", str)
str2 <- gsub("[ \t]+$", "", str2)
}, head = {
str2 <- gsub("^[ \t]+", "", str)
}, tail = {
str2 <- gsub("[ \t]+$", "", str)
})
return(str2)
} else {
str2 <- vapply(str, .stripWhiteSpace, method = method, FUN.VALUE = character(1))
return(str2)
}
}
# ==== LongTable
#' Convenience function for collapsing a character vector
#'
#' @examples
#' .collapse(c("Vector", "of", "words")
#'
#' @param ... `pairlist` One or more character vectors
#' @param collapse `character` Argument to collapse of paste0, default is ' '.
#'
#' @return `character` A single character vector.
#'
#' @keywords internal
#' @export
#' @noRd
.collapse <- function(..., collapse=' ')
paste0(..., collapse=collapse)
#' Returns a colorized error message (magenta)
#'
#' @examples
#' cat(.errorMsg('This ', 'is ', 'an ', 'error ', 'message', time = TRUE))
#'
#' @param ... `pairlist` One or more strings or character vectors, also
#' accepts any params to paste0.
#' @param time `logical` Indicates whether to include timestamp or not. Default is FALSE.
#'
#' @return `character` Colorized string with results from paste0(...)
#'
#' @keywords internal
#' @export
#' @noRd
.errorMsg <- function(..., time = FALSE, collapse=', ') {
msg <- paste0(..., collapse=collapse)
if (time) {
timestamp <- format(Sys.time(), "%Y-%m-%d %H:%M:%S")
msg <- paste0(timestamp, " ", msg)
}
magenta$bold(msg)
}
#' Returns a colorized warning message (cyan)
#'
#' @examples
#' cat(.warnMsg('This ', 'is ', 'a ', 'warning ', 'message', time = TRUE))
#'
#' @param ... `pairlist` One or more strings or character vectors, also
#' accepts any params to paste0.
#' @param time `logical` Indicates whether to include timestamp or not. Default is FALSE.
#'
#' @return `character` Colorized string with results from paste0(...)
#'
#' @keywords internal
#' @export
#' @noRd
.warnMsg <- function(..., time = FALSE, collapse=', ') {
msg <- paste0(..., collapse=collapse)
if (time) {
timestamp <- format(Sys.time(), "%Y-%m-%d %H:%M:%S")
msg <- paste0(timestamp, " ", msg)
}
cyan$bold(msg)
}
#' Returns a colorized info message (green)
#' @examples
#' cat(.infoMsg('This ', 'is ', 'an ', 'info ', 'message', time = TRUE))
#' @param ... `pairlist` One or more strings or character vectors, also
#' accepts any params to paste0.
#' @param time `logical` Indicates whether to include timestamp or not. Default is FALSE.
#' @return `character` Colorized string with results from paste0(...)
#' @keywords internal
#' @export
#' @noRd
#' @aliases .info
.infoMsg <- function(..., time = FALSE, collapse=', ') {
msg <- paste0(..., collapse=collapse)
if (time) {
timestamp <- format(Sys.time(), "%Y-%m-%d %H:%M:%S")
msg <- paste0(timestamp, " ", msg)
}
green$bold(msg)
}
#' Get the types of all items in a list
#'
#' @examples
#' list <- list(c(1,2,3), c('a','b','c'))
#' is.items(list, 'character')
#'
#' @param list A `list` to get the types from
#' @param ... `pairlist` Additional arguments to FUN
#' @param FUN `function` or `character` Either a function, or the name
#' of a function which returns a single logical value. The default function
#' uses `is`, specify the desired type in `...`. You can also use other
#' type checking functions such as is.character, is.numeric, or is.data.frame.
#'
#' @return `logical` A vector indicating if the list item is the specified
#' type.
#'
#' @export
is.items <- function(list, ..., FUN=is)
vapply(list, FUN=FUN, FUN.VALUE=logical(1), ...)
#' @export
.length_unique <- function(x) length(unique(x))
#' @export
.list_unique <- function(x) list(unique(x))
#' @export
.all_equals <- function(x, y) all(x == y)
#' Return the name of the function and the name of the package that function
#' is in when called within an R function.
#'
#' For providing context in user messages, warnings and errors
#'
#' @param n `integer` How far up the call stack to look for context. Defaults to
#' 2 since it is assumed this function will be used inside of `message`,
#' `warning` or `stop`.
#'
#' @return A `character` vector with the name of the function
#' `.getExecutionContext` was called from, as well as the package name,
#' if applicable.
#'
#' @md
#' @keywords internal
#' @importFrom rlang trace_back
#' @importFrom utils packageName
#' @noRd
#' @aliases .context
.getExecutionContext <- function(n=2) {
# name of function which called this function
callStack <- rlang::trace_back()$calls
context <- deparse(callStack[[length(callStack) - n]][1])
# remove function arguments
context <- gsub('\\(.*\\)', '', context)
# deal with getting function names from inside an lapply statement
## TODO:: clean this up
if (grepl('.*lapply.*', context)) {
context <- deparse(callStack[[length(callStack) - (n + 1)]][3])
context <- gsub('\\(.*\\)', '', context)
# deal with S4 lapply calls (e.g., endoapply)
if (grepl('.*match.fun.*', context)) {
context <- deparse(callStack[[length(callStack) - (n + 5)]][3])
context <- gsub('\\(.*\\)', '', context)
}
} else if (grepl('.*mapply.*', context)) {
context <- deparse(callStack[[length(callStack) - (n + 1)]][1])
context <- gsub('\\(.*\\)', '', context)
if (grepl('.*match.fun.*', context)) {
context <- deparse(callStack[[length(callStack) - (n + 5)]][1])
context <- gsub('\\(.*\\)', '', context)
}
} else if (grepl('.*FUN.*', context)) {
context <- deparse(callStack[[length(callStack) - (n + 2)]][3])
context <- gsub('\\(.*\\)', '', context)
# deal with S4 lapply calls (e.g., endoapply)
if (grepl('.*match.fun.*', context)) {
context <- tryCatch({
deparse(callStack[[length(callStack) - (n + 6)]][3])
}, error=function(e) 'context_failed')
context <- gsub('\\(.*\\)', '', context)
}
}
if (!grepl('::', context)) context <- paste0(packageName(), '::', context)
return(paste0('\n[', context, '] '))
}
#' @noRd
.context <- .getExecutionContext
#'
#'
#'
#'
#' @md
#' @export
.S4MethodContext <- function(generic, ...) {
dots <- list(...)
formals <- selectMethod(generic, signature=dots)
context <- paste0(
formals@target@package[1], '::`', # what package is the method from
formals@generic, ',', # what is the name of the generic
paste0(formals@target@.Data, collapse=','), '-method`') # what is the method signature
return(context)
}
# Let it live here for now...
#' Build an assay table with an `S4` object.
#'
#' @param object `S4` An S4 object a list-like slot containing assays for the
#' object.
#' @param ... Allow new arguments to be defined for this generic.
#'
#' @return `data.table`.
#'
#' @examples
#' "This is a generic method!"
#'
#' @exportMethod buildComboProfiles
setGeneric("buildComboProfiles", function(object, ...) standardGeneric("buildComboProfiles"))
#' Build an assay table with selected assay profiles for drug combinations
#'
#' @examples
#' \dontrun{
#' combo_profile_1 <- buildComboProfiles(tre, c("auc", "SCORE"))
#' combo_profile_2 <- buildComboProfiles(tre, c("HS", "EC50", "E_inf", "ZIP"))
#' }
#'
#' @param object `LongTable` or inheriting class containing curated drug combination data.
#' @param profiles `character` a vector of profile names, i.e., column names of assays.
#'
#' @return A `data.table` containing fields
#' `treatment1id`, `treatment1dose`, `treatment2id`, `treatment2dose`, `sampleid`,
#' which are used as keys to keep track of profiles,
#' along with columns of selected profiles from their assays.
#' Each `*_1` is the monothearpy profile of treatment 1 in the combination,
#' and the same rule applies to treatment 2.
#'
#' @import data.table
#' @importFrom methods is
#' @export
#' @docType methods
setMethod("buildComboProfiles", signature(object = "LongTable"),
function(object, profiles) {
if (!is.character(profiles)) {
stop("argument `profiles` must be `character`")
} else if (length(profiles) == 0) {
stop("argument `profiles` must not be empty")
}
if (is.null(object[["sensitivity"]])) {
stop("Assay sensitivity is missing", call. = FALSE)
} else if (!"treatment2id" %in% idCols(object)) {
stop("This `TreatmentResponseExperiment` does not contain drug combination data.",
call. = FALSE)
}
get_combo_viability <- ("combo_viability" %in% profiles)
#if (get_combo_viability) {
# profiles <- profiles[!profiles %in% "combo_viability"]
# # and enable option for including combo viability
#}
combo_keys <- c("treatment1id", "treatment2id",
"treatment1dose", "treatment2dose", "sampleid")
if (any(combo_keys %in% profiles)) {
profiles <- profiles[!profiles %in% combo_keys]
# and enable option for including dose here?
}
## stop if none of the assays contain user selected profiles
which_profiles <- lapply(assayCols(object), function(x) {
if (any(x %in% profiles))
return(x %in% profiles)
})
which_profiles[sapply(which_profiles, is.null)] <- NULL
if (length(which_profiles) == 0)
stop("No profiles found in any assay!")
## check whether there are profiles not present in assays
profiles_exist <- vapply(profiles, function(x){
any(sapply(assayCols(object), function(y) x %in% y))
}, logical(1))
profiles_not_exist <- names(profiles_exist)[which(profiles_exist == FALSE)]
if (length(profiles_not_exist) > 0)
warning(
'No profiles named ',
paste(profiles_not_exist, collapse = ", "),
' in any of the assays, thus will not be included in the returned table.',
call. = FALSE
)
if (!is.null(object[["combo_viability"]])) {
#if (get_combo_viability) {
# combo_profiles <- object[["combo_viability"]][,
# c(combo_keys, "combo_viability"), with = FALSE
# ]
#} else {
# combo_profiles <- object[["combo_viability"]][,
# combo_keys, with = FALSE
# ]
#}
combo_profiles <- object[["combo_viability"]][,
combo_keys, with = FALSE
]
## we know replicates have been averaged in combo_viability
} else {
#if (get_combo_viability) {
# object |>
# subset(!is.na(treatment2dose)) |>
# aggregate(
# assay = "sensitivity",
# combo_viability = (mean(viability) / 100),
# by = combo_keys
# ) -> combo_profiles
#} else {
# combo_profiles <- unique(
# object$sensitivity[
# !is.na(treatment2dose),
# combo_keys,
# with = FALSE
# ],
# by = combo_keys
# )
#}
combo_profiles <- unique(
object$sensitivity[
!is.na(treatment2dose),
combo_keys,
with = FALSE
],
by = combo_keys
)
}
setkeyv(combo_profiles, combo_keys)
assay_to_query <- names(which_profiles)
## how do we handle replicate rows?
for (i in seq_along(which_profiles)) {
assay_cols <- assayCols(object)[[assay_to_query[i]]]
query_profiles <- assay_cols[which_profiles[[i]]]
assay_ <- object[[assay_to_query[i]]]
if (!("treatment2id" %in% assay_cols)) {
## Assays for monotherapy data
## Here I assume monotherapy assay tables have fewer keys
## and less cardinality than treatment combo tables
## might need extra condition check?
monotherapy_keys <- c("treatment1id", "sampleid")
if ("treatment1dose" %in% assay_cols)
monotherapy_keys <- c(monotherapy_keys, "treatment1dose")
assay_ <- assay_[, c(monotherapy_keys, query_profiles), with = FALSE]
combo_profiles <- combo_profiles[assay_, ,
on = c(treatment1id = "treatment1id", sampleid = "sampleid")
]
## remove single agents not tested in drug combination screening
combo_profiles <- combo_profiles[!is.na(treatment2dose)]
combo_profiles <- merge(
combo_profiles,
assay_,
by.x = c("treatment2id", "sampleid"),
by.y = c("treatment1id", "sampleid"),
suffixes = c("_1", "_2")
)
## remove single agents not tested in drug combination screening
combo_profiles <- combo_profiles[!is.na(treatment1dose)]
## Edge case: adding profiles in sensitivity first
## then add monotherapy profiles
replicates <- c("tech_rep", "bio_rep")
has_reps <- replicates %in% colnames(combo_profiles)
if (any(has_reps)) {
setkeyv(combo_profiles, c(combo_keys, replicates[has_reps]))
} else {
setkeyv(combo_profiles, combo_keys)
}
} else {
assay_keys <- key(assay_)
common_keys <- intersect(key(combo_profiles), assay_keys)
if (dim(combo_profiles)[1] >= dim(assay_)[1]) {
## Here assume less cardinality implies no replicates
assay_ <- assay_[, c(common_keys, query_profiles), with = FALSE]
setkeyv(assay_, common_keys)
## Left-join on combo_profiles
combo_profiles <- combo_profiles[assay_, ,
on = common_keys
]
} else { ## might have replicates
## likely to happen for profiles in sensitivity assay
replicates <- c("tech_rep", "bio_rep")
reps_in_common_keys <- replicates %in% common_keys
reps_in_assay_keys <- replicates %in% assay_keys
if (!all(reps_in_common_keys) & any(reps_in_assay_keys))
miss_rep_key <- xor(reps_in_common_keys, reps_in_assay_keys)
if (any(miss_rep_key)) {
## treat it as a profile to add first
add_rep_key <- replicates[which(reps_in_assay_keys)]
query_profiles <- c(query_profiles, add_rep_key)
setkeyv(assay_, c(common_keys, add_rep_key))
}
assay_ <- assay_[, c(common_keys, query_profiles), with = FALSE]
## Left-join on assay_, replicate has become a key if present in assay_
combo_profiles <- assay_[combo_profiles, ,
on = common_keys
]
}
}
}
return(combo_profiles)
})
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.