R/core.R

Defines functions DEXSeq DEXSeqResults estimateExonFoldChanges testForDEU vst rmDepCols

Documented in DEXSeq DEXSeqResults estimateExonFoldChanges testForDEU

#' @import Biobase BiocGenerics hwriter methods stringr statmod biomaRt GenomicRanges S4Vectors IRanges Rsamtools DESeq2 BiocParallel geneplotter genefilter SummarizedExperiment
#' @importFrom AnnotationDbi select
#' @importFrom RColorBrewer brewer.pal
#' @importFrom grDevices colorRamp colorRampPalette dev.off rgb svg
#' @importFrom graphics abline axis hist layout mtext par plot.new plot.window rect segments
#' @importFrom stats as.formula coefficients model.matrix runif terms weighted.mean
#' @importFrom utils read.delim read.table
#' @importFrom stats relevel
#' @exportClass DEXSeqDataSet DEXSeqResults
#' @exportMethod  plotMA counts estimateSizeFactors subsetByOverlaps findOverlaps `[` `$<-` `colData<-`
#' @export geneIDs `geneIDs<-` groupIDs `groupIDs<-` exonIDs `exonIDs<-` featureIDs `featureIDs<-` DEXSeqHTML plotDEXSeq featureCounts perGeneQValue DEXSeqDataSet DEXSeqDataSetFromSE DEXSeqDataSetFromHTSeq DEXSeqResults estimateExonFoldChanges DEXSeq sampleAnnotation

rmDepCols <- function(m){
    q <- qr(m)
    if (q$rank < ncol(m)) 
        m[, -q$pivot[(q$rank + 1):ncol(m)]]
    else m
}


#BPPARAM <- MulticoreParam(workers=1)
#fullModel <- design(object)
#reducedModel <- ~ sample + exon
vst <- function( x,  object ){
    if( is.null( attr(object@dispersionFunction, "fitType") ) ) {
        warning("Dispersion function not found, applying log2(x+ 1) instead of vst...\n")
        return( log10(x+1) )
    }else if ( attr(object@dispersionFunction, "fitType") != "parametric" ){
        warning("Dispersion function not parametric, applying log2(x+ 1) instead of vst...\n")
        return( log10(x+1) )
    }
  coefs <- attr(object@dispersionFunction, "coefficients")
    (2/(sqrt(coefs["asymptDisp"]))) * log(2 * coefs["asymptDisp"] * 
      sqrt(x) + 2 * sqrt(coefs["asymptDisp"] * (coefs["extraPois"] + 
        1 + coefs["asymptDisp"] * x))) - (2/(sqrt(coefs["asymptDisp"]))) * 
          log(2 * sqrt(coefs["asymptDisp"] * (coefs["extraPois"] + 1)))
}


#' @name testForDEU
#' @title Test for Differential Exon Usage
#' @description This will perform a likelihood ratio test for differential
#' exon usage. Internally, it calls the DESeq2 function \code{nbinomLRT}. 
#' @param object A DEXSeqDataSet object.
#' @param fullModel The full model formula.
#' @param reducedModel Null model formula.
#' @param BPPARAM A "BiocParallelParam" instance. See \code{?bplapply} for details.
#' @param fitType Specifies what internal engine to use for fitting the GLMs. Options are "DESeq2" or "glmGamPoi".
#' @details The information of the variables of the formulas
#' should be present in the \code{colData} of the
#' \code{DEXSeqDataSet} object.
#' @return A \code{DEXSeqDataSet} with slots filled with information about the test.
#'
#' @examples
#'
#' data(pasillaDEXSeqDataSet, package="pasilla")
#' dxd <- estimateSizeFactors( dxd )
#' dxd <- estimateDispersions( dxd )
#' dxd <- testForDEU( dxd )
#' @export 
testForDEU <-
  function(object,
           fullModel=design(object),
           reducedModel= ~ sample + exon,
           BPPARAM=SerialParam(), fitType=c("DESeq2", "glmGamPoi"))
{
  if (is.null(sizeFactors(object)) & is.null(normalizationFactors(object))) {
    stop("first call estimateSizeFactors or provide a normalizationFactor matrix")
  }
  if (is.null(dispersions(object))) {
    stop("first call estimateDispersions")
  }

  allVars <- all.vars(reducedModel)
  if( any(!allVars %in% colnames( colData(object) )) ){
     notPresent <- allVars[!allVars %in% colnames( colData(object) )]
     notPresent <- paste(notPresent, collapse=",")
     stop(sprintf("the variables '%s' of the parameter 'reducedModel' are not specified in the columns of colData", notPresent ) )
  }

  allVars <- all.vars(fullModel)
  if( any(!allVars %in% colnames( colData(object) )) ){
     notPresent <- allVars[!allVars %in% colnames( colData(object) )]
     notPresent <- paste(notPresent, collapse=",")
     stop(sprintf("the variables '%s' of the parameter 'fullModel' are not specified in the columns of colData", notPresent ) )
  }

  fullModelMatrix <- 
    rmDepCols( model.matrix( fullModel, as.data.frame(colData(object)) ) )

  reducedModelMatrix <- 
    rmDepCols( model.matrix( reducedModel, as.data.frame(colData(object)) ) )

  if( is( BPPARAM, "SerialParam" ) ){
    numParts <- 1L
  }else{
    numParts <- BPPARAM$workers
  }
  
  splitParts <- sort( rep( seq_len( numParts ), length.out=nrow(object) ) )
  splitObject <- split( object, splitParts )

  splitObject <- bplapply(
      splitObject,
      function(x, ... ){
          nbinomLRT( x, reduced = reducedModelMatrix, full=fullModelMatrix, type=fitType )
      },
      reducedModelMatrix=reducedModelMatrix, fullModelMatrix=fullModelMatrix,
      fitType=fitType,
      BPPARAM=BPPARAM )

  mergeObject <- do.call(rbind, splitObject)
  matchedNames <- match( rownames(object), rownames(mergeObject))  
  mcols(object) <- mcols( mergeObject )[matchedNames,]
  assays(object) <- assays(mergeObject[matchedNames,])

  extraAttributes <- setdiff( names( attributes(splitObject[[1]]) ),  names( attributes(object) ) )

  for( atr in extraAttributes ){
    attr( object, atr ) <- attr( splitObject[[1]], atr )
  }

  object
 
}

estimateExonFoldChanges <- function( object,
                                    fitExpToVar = "condition",
                                    denominator = "",
                                    BPPARAM=SerialParam(), 
                                    maxRowsMF=2400, independentFiltering=FALSE, filter)
{
    stopifnot(is(object, "DEXSeqDataSet"))
    # Temporary hack for backward compatibility with "old" DEXSeqDataSet
    # objects. Remove once all serialized DEXSeqDataSet objects around have
    # been updated.
    if (!.hasSlot(object, "rowRanges"))
        object <- updateObject(object)
    if (any(is.na(sizeFactors(object)))) {
      stop("Please estimate sizeFactors first\n")
    }
    if (!fitExpToVar %in% colnames(sampleAnnotation(object))) {
      stop(sprintf("The value of the parameter fitExpToVar,'%s', is not a column name of colData", fitExpToVar))
    }
    if ( is.null( dispersions(object) ) ){
      stop("please call estimateDispersions first")
    }
    if ( length( attr( object, "test" ) ) == 0 ){
      stop("please call testForDEU first")
    }
    frm <- as.formula(paste("count ~", fitExpToVar, "* exon"))
    if( independentFiltering ){
        if( missing(filter) ){
            filter=rowMeans(featureCounts(object, normalized = TRUE))
        }
        notNAs <- !is.na( results(object, filter=filter)$padj )
    }else{
        notNAs <- rep(TRUE, nrow(object))
    }
    notNAs <- notNAs & !mcols(object)$allZero
    groups <- groupIDs(object)
    disps <- dispersions(object)
    disps[is.na(disps)] <- 1e-6
    mf <- object@modelFrameBM
    if( is( mf[[fitExpToVar]], "numeric" ) ){
        maxRowsMF <- 0
    }
    numsamples <- nrow( sampleAnnotation(object) )
    features <- featureIDs(object)
    countsAll <- featureCounts(object)
    allExonIDs <- as.character( mf$exon )
    testablegenes <- groups[notNAs]

    ###### separate genes with few exons from large exons
    ###### and fit the different but equivalent models separately
    ######
    
    numOfExonsLimitBM <- round(maxRowsMF/numsamples)
    exonsPerGene <- table(testablegenes)
    testablegenesBM <- names(exonsPerGene[exonsPerGene < numOfExonsLimitBM])
    testablegenesSM <- names(exonsPerGene)[!names(exonsPerGene) %in% testablegenesBM]
    if( length(testablegenesBM) > 0 ){
       alleffectsBM <- bplapply( testablegenesBM,
                              getEffectsForGeneBM,
                              groups=groups, notNAs=notNAs,
                              countsAll=countsAll, disps=disps,
                              features=features, mf=mf, frm=frm,
                              numsamples=numsamples,
                              fitExpToVar=fitExpToVar,
                              BPPARAM=BPPARAM )
       alleffectsBM <- do.call(rbind, alleffectsBM)
    }else{
        alleffectsBM <- NULL
    }

    exonIndexes <- which( groups %in% testablegenesSM & notNAs )

    if( length(exonIndexes) > 0 ){
        countsAll <- counts( object )
        mfSmall <- modelFrameSM(object)
        alleffectsSM <- bplapply( exonIndexes, getEffectsForExonsSM,
                                 frm=frm, countsAll=countsAll,
                                 disps=disps, mfSmall=mfSmall,
                                 fitExpToVar=fitExpToVar, 
                                 BPPARAM=BPPARAM) 
        names(alleffectsSM) <- rownames(object)[exonIndexes]
#        alleffectsSM <- t(simplify2array(alleffectsSM))
        alleffectsSM <- do.call( rbind, alleffectsSM )
    }else{
        alleffectsSM <- NULL
    }

    alleffects <- rbind( alleffectsBM, alleffectsSM )
#    alleffects[
    alleffectsVst <- vst(exp(alleffects), object)
    toadd <- matrix(NA, nrow = nrow(object), ncol = ncol(alleffects))
    rownames(toadd) <- rownames(object)
    colnames(toadd) <- colnames(alleffects)
    toadd[rownames(alleffects), colnames(alleffects)] <- alleffectsVst
    toadd <- DataFrame(toadd)
    mcols(toadd) <- DataFrame(
        type=rep("DEXSeq results",ncol(toadd)),
        description=rep("exon usage coefficient",ncol(toadd) ) )
    toadd2 <- matrix(NA, nrow = nrow(object), ncol = ncol(alleffects) )
    if (denominator == "") {
#        denominator <- as.character(sampleAnnotation(object)[[fitExpToVar]][1])
        denominator=colnames(alleffects)[1]
    }
    colRemove <- colnames(alleffects) %in% denominator
    stopifnot(any(colRemove))
    denoCol <- which(colnames(alleffects) == denominator)
    alleffects <- alleffects / log(2)
    alleffects <- alleffects - alleffects[, denoCol]
    colnames(alleffects) <- sprintf("log2fold_%s_%s", colnames(alleffects), 
            denominator)
    colnames(toadd2) <- colnames(alleffects)
    rownames(toadd2) <- rownames(object)
    toadd2[rownames(alleffects), colnames(alleffects)] <- alleffects
    toadd2 <- toadd2[,-denoCol, drop=FALSE]
    toadd2 <- DataFrame(toadd2)
    mcols(toadd2) <- DataFrame(
        type=rep("DEXSeq results",ncol(toadd2)),
        description=rep("relative exon usage fold change",ncol(toadd2) ) )
    allAdd <- cbind(toadd, toadd2)
    mcols(object) <- cbind(mcols(object), allAdd)
    object
}


DEXSeqResults <- function( object, independentFiltering=TRUE, filter){
  stopifnot( is(object, "DEXSeqDataSet"))
  # Temporary hack for backward compatibility with "old" DEXSeqDataSet
  # objects. Remove once all serialized DEXSeqDataSet objects around have
  # been updated.
  if (!.hasSlot(object, "rowRanges"))
      object <- updateObject(object)
  if( missing( filter ) ){
      filter=rowMeans( featureCounts( object, normalized=TRUE ) )
  }
  LRTresults <- results(object, filter=filter, independentFiltering=independentFiltering )
  LRTresults$exonBaseMean <- rowMeans(featureCounts(object, normalized=TRUE))
  LRTresults$featureID <- mcols(object)$featureID
  LRTresults$groupID <- mcols(object)$groupID
  LRTresults$dispersion <- mcols(object)$dispersion
  
  LRTresults <- LRTresults[,c("groupID", "featureID", "exonBaseMean", "dispersion", "stat", "pvalue", "padj")]
  mcols( LRTresults )[colnames(LRTresults) %in% c("groupID", "featureID", "exonBaseMean"),"type"] <- "input"
  mcols( LRTresults )[colnames(LRTresults) %in% "groupID","description"] <- "group/gene identifier"
  mcols( LRTresults )[colnames(LRTresults) %in% "featureID","description"] <- "feature/exon identifier"
  mcols( LRTresults )[colnames(LRTresults) %in% "exonBaseMean","description"] <- "mean of the counts across samples in each feature/exon"
  mcols( LRTresults )[colnames(LRTresults) %in% "dispersion","description"] <- "exon dispersion estimate"
  toadd <- mcols(object)[,mcols( mcols(object ) )$type == "DEXSeq results", drop=FALSE]
  LRTresults <- cbind( LRTresults, toadd )
  genomicData <- rowRanges(object)
  mcols(genomicData) <- NULL
  LRTresults$genomicData <- genomicData
  LRTresults$countData <- featureCounts(object)
  LRTresults$transcripts <- mcols(object)$transcripts
  mcols( LRTresults )[colnames(LRTresults) %in% c("genomicData", "countData", "transcripts"),"type"] <- "input"
  mcols( LRTresults )[colnames(LRTresults) %in% "genomicData","description"] <- "GRanges object of the coordinates of the exon/feature"
  mcols( LRTresults )[colnames(LRTresults) %in% "countData","description"] <- "matrix of integer counts, of each column containing a sample"
  mcols( LRTresults )[colnames(LRTresults) %in% "transcripts","description"] <- "list of transcripts overlapping with the exon"
  dxr <-
      new("DEXSeqResults",
          LRTresults,
          modelFrameBM=object@modelFrameBM,
          sampleData = sampleAnnotation(object),
          dispersionFunction = object@dispersionFunction )

  dxr
}

DEXSeq <- function( object,
                   fullModel=design(object),
                   reducedModel = ~ sample + exon,
                   BPPARAM=MulticoreParam(workers=1), fitExpToVar="condition", quiet=TRUE ){
  stopifnot(is( object, "DEXSeqDataSet") )
  # Temporary hack for backward compatibility with "old" DEXSeqDataSet
  # objects. Remove once all serialized DEXSeqDataSet objects around have
  # been updated.
  if (!.hasSlot(object, "rowRanges"))
      object <- updateObject(object)
  object <- estimateSizeFactors( object )
  object <- estimateDispersions( object, formula=fullModel, BPPARAM=BPPARAM, quiet=TRUE)
  object <- testForDEU( object, reducedModel=reducedModel, fullModel=fullModel, BPPARAM=BPPARAM )
  object <- estimateExonFoldChanges( object, fitExpToVar=fitExpToVar )
  res <- DEXSeqResults( object )
  res
}
areyesq89/DEXSeq documentation built on Oct. 15, 2023, 1:40 p.m.