View source: R/BN_module_func.R
sampling_phase | R Documentation |
sampling_phase
Now we apply 2 MCMC simulations and check the RMS value.
After the burn-in period, we discard the values from the first half
of this phase.
sampling_phase( second.adapt.phase_net, omics, layers_def, prob_mbr, thin, minseglen, burn_in, annot )
second.adapt.phase_net |
list output of the second.adapt.phase function. |
omics |
named list containing the gene expression (possibly copy number variation and methylation data). Each component of the list is a matrix with samples in rows and features in columns. |
layers_def |
data.frame containing the modality ID, corresponding layer in BN and maximal number of parents from given layer to GE nodes. |
prob_mbr |
numeric vector probability of the MBR step. |
thin |
numeric vector thinning frequency of the resulting MCMC simulation. |
minseglen |
numeric vector minimal number of iterations with the c_rms value below the c_rms threshold. |
burn_in |
numeric vector the minimal length of burn-in period of the MCMC simulation. |
annot |
named list containing the associated methylation probes of given gene. |
List of 2 elements: sampling phase result; RMS used to evaluate MCMC convergence
data(list=c("PK", "TFtarg_mat", "annot", "layers_def", "omics"), package="IntOMICS") OMICS_mod_res <- OMICS_module(omics = omics, PK = PK, annot = annot, layers_def = layers_def, TFtargs = TFtarg_mat, r_squared_thres = 0.3, lm_METH = TRUE) first.adapt.phase_net <- first_adapt_phase(omics = OMICS_mod_res$omics, B_prior_mat = OMICS_mod_res$B_prior_mat, prob_mbr = 0.07, len = 5, energy_all_configs_node = OMICS_mod_res$pf_UB_BGe_pre$energy_all_configs_node, layers_def = OMICS_mod_res$layers_def, annot = OMICS_mod_res$annot, BGe_score_all_configs_node = OMICS_mod_res$pf_UB_BGe_pre$BGe_score_all_configs_node, parent_set_combinations = OMICS_mod_res$pf_UB_BGe_pre$parents_set_combinations) transient.phase_net <- transient_phase(prob_mbr = 0.07, first.adapt.phase_net = first.adapt.phase_net, omics = OMICS_mod_res$omics, B_prior_mat = OMICS_mod_res$B_prior_mat, layers_def = OMICS_mod_res$layers_def, annot = OMICS_mod_res$annot, energy_all_configs_node = OMICS_mod_res$pf_UB_BGe_pre$energy_all_configs_node, BGe_score_all_configs_node = OMICS_mod_res$pf_UB_BGe_pre$BGe_score_all_configs_node, parent_set_combinations = OMICS_mod_res$pf_UB_BGe_pre$parents_set_combinations) second.adapt.phase_net <- second_adapt_phase(prob_mbr = 0.07, transient.phase_net = transient.phase_net, woPKGE_belief = 0.5, omics = OMICS_mod_res$omics, B_prior_mat = OMICS_mod_res$B_prior_mat, layers_def = OMICS_mod_res$layers_def, annot = OMICS_mod_res$annot, energy_all_configs_node = OMICS_mod_res$pf_UB_BGe_pre$energy_all_configs_node, BGe_score_all_configs_node = OMICS_mod_res$pf_UB_BGe_pre$BGe_score_all_configs_node, parent_set_combinations = OMICS_mod_res$pf_UB_BGe_pre$parents_set_combinations) sampling_phase(second.adapt.phase_net = second.adapt.phase_net, omics = OMICS_mod_res$omics, layers_def = OMICS_mod_res$layers_def, prob_mbr = 0.07, thin = 500, minseglen = 50000, burn_in = 100000, annot = OMICS_mod_res$annot)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.