init.net.mcmc: Random initial network

View source: R/NET_manipulation_func.R

init.net.mcmcR Documentation

Random initial network

Description

init.net.mcmc This function is used to sample random initial network. The edges are sampled only between GE nodes.

Usage

init.net.mcmc(omics, layers_def, B_prior_mat)

Arguments

omics

named list containing the gene expression (possibly copy number variation and methylation data). Each component of the list is a matrix with samples in rows and features in columns.

layers_def

data.frame containing the modality ID, corresponding layer in BN and maximal number of parents from given layer to GE nodes.

B_prior_mat

a biological prior matrix.

Value

List of 2 elements: random adjacency network and empty network

Examples

data(list=c("PK", "TFtarg_mat", "annot", "layers_def", "omics"),
package="IntOMICS")
B <- B_prior_mat(omics = omics, PK = PK, annot = annot, lm_METH = TRUE,
     layers_def = layers_def, r_squared_thres = 0.3, p_val_thres = 0.05,
     TFtargs = TFtarg_mat, TFBS_belief = 0.75, nonGE_belief = 0.5, 
     woPKGE_belief = 0.5)
init.net.mcmc(omics = B$omics, layers_def = layers_def, 
     B_prior_mat = B$B_prior_mat)


anna-pacinkova/intomics_package documentation built on Aug. 13, 2022, 11:38 a.m.