View source: R/mplnVisualize.R
mplnVisualizeLine | R Documentation |
A function to visualize clustering results via line plots. Each cluster will have its own plot. Data is log-transformed prior to visualizing. Values for each sample are connected by dashed lines to illustrate the trends (log counts). The yellow line shows the mean value (log counts) for each cluster.
mplnVisualizeLine(
dataset,
clusterMembershipVector = NA,
fileName = paste0("Plot_", date()),
LinePlotColours = "black",
printPlot = TRUE,
format = "pdf"
)
dataset |
A dataset of class matrix and type integer such that rows correspond to observations and columns correspond to variables. |
clusterMembershipVector |
A numeric vector of length nrow(dataset) containing the cluster membership of each observation. If not provided, all observations will be treated as belonging to one cluster. Default is NA. |
fileName |
Unique character string indicating the name for the plot being generated. Default is Plot_date, where date is obtained from date(). |
LinePlotColours |
Character string indicating if the line plots should be multicoloured or monotone, in black. Options are 'multicolour' or 'black'. Default is 'black'. |
printPlot |
Logical indicating if plot(s) should be saved in local directory. Default TRUE. Options TRUE or FALSE. |
format |
Character string indicating the format of the image to be produced. Default 'pdf'. Options 'pdf' or 'png'. |
Plotting function provides the possibility for line plots.
Anjali Silva, anjali@alumni.uoguelph.ca
# Example 1
# Setting parameters
trueMu1 <- c(6.5, 6, 6, 6, 6, 6)
trueMu2 <- c(2, 2.5, 2, 2, 2, 2)
trueSigma1 <- diag(6) * 2
trueSigma2 <- diag(6)
# Generate simulated data
simulatedCounts <- MPLNClust::mplnDataGenerator(nObservations = 100,
dimensionality = 6,
mixingProportions = c(0.79, 0.21),
mu = rbind(trueMu1, trueMu2),
sigma = rbind(trueSigma1, trueSigma2),
produceImage = "No")
# Clustering data
MPLNClustResults <- MPLNClust::mplnVariational(
dataset = as.matrix(simulatedCounts$dataset),
membership = "none",
gmin = 1,
gmax = 2,
initMethod = "kmeans",
nInitIterations = 1,
normalize = "Yes")
# Visualize data using line plot
MPLNLineBlack <- MPLNClust::mplnVisualizeLine(dataset = simulatedCounts$dataset,
clusterMembershipVector =
MPLNClustResults$allResults$`G=2`$clusterlabels,
fileName = 'TwoClusterModel',
printPlot = FALSE,
format = 'png')
# Visualize data using line plot with multicolours
# Use navigation buttons to see previous plots
MPLNLineColor <- MPLNClust::mplnVisualizeLine(dataset = simulatedCounts$dataset,
clusterMembershipVector =
MPLNClustResults$allResults$`G=2`$clusterlabels,
fileName = 'TwoClusterModel',
LinePlotColours = "multicolour",
printPlot = FALSE,
format = 'png')
# Example 2
# Carry out K-means clustering for same dataset as above
# Use navigation buttons to see previous plots
set.seed(1234)
KmeansLineColor <- MPLNClust::mplnVisualizeLine(dataset = simulatedCounts$dataset,
clusterMembershipVector =
kmeans(simulatedCounts$dataset, 3)$cluster,
fileName = 'ThreeClusterKmeansModel',
LinePlotColours = "multicolour",
printPlot = FALSE,
format = 'png')
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.