View source: R/mplnMCMCEMClustering.R
mplnDataGenerator | R Documentation |
This function simulates data from a mixture of MPLN model.
mplnDataGenerator(
nObservations,
dimensionality,
mixingProportions,
mu,
sigma,
produceImage = "No",
ImageName = "sampleName"
)
nObservations |
A positive integer indicating the number of observations for the dataset. |
dimensionality |
A positive integer indicating the dimensionality for the dataset. |
mixingProportions |
A numeric vector that length equal to the number of total components, indicating the proportion of each component. Vector content should sum to 1. |
mu |
A matrix of size (dimensionality x number of components), indicating the mean for each component. See example. |
sigma |
A matrix of size ((dimensionality * number of components) x dimensionality), indicating the covariance matrix for each component. See example. |
produceImage |
A character string indicating whether or not to produce an image. Options "Yes" or "No". Image will be produced as 'Pairs plot of log-transformed data.png" in the current working directory. |
ImageName |
A character string indicating name for image, if produceImage is set to "Yes". Default is "TwoComponents". |
Returns an S3 object of class mplnDataGenerator with results.
dataset - Simulated dataset.
trueMembership -A numeric vector indicating the membership of each observation.
probaPost - A matrix indicating the posterior probability that each observation belong to the component/cluster.
truenormfactors - A numeric vector indicating the true normalization factors used for adjusting the library sizes.
observations - Number of observations in the simulated dataset.
dimensionality - Dimensionality of the simulated dataset.
mixingProportions - A numeric vector indicating the mixing proportion of each component.
mu - True mean used for the simulated dataset.
sigma - True covariances used for the simulated dataset.
Anjali Silva, anjali@alumni.uoguelph.ca
Aitchison, J. and C. H. Ho (1989). The multivariate Poisson-log normal distribution. Biometrika 76.
Silva, A. et al. (2019). A multivariate Poisson-log normal mixture model for clustering transcriptome sequencing data. BMC Bioinformatics 20. Link
trueMu1 <- c(6.5, 6, 6, 6, 6, 6)
trueMu2 <- c(2, 2.5, 2, 2, 2, 2)
trueSigma1 <- diag(6) * 2
trueSigma2 <- diag(6)
# Generating simulated data
sampleData <- MPLNClust::mplnDataGenerator(nObservations = 100,
dimensionality = 6,
mixingProportions = c(0.79, 0.21),
mu = rbind(trueMu1, trueMu2),
sigma = rbind(trueSigma1, trueSigma2),
produceImage = "No",
ImageName = "TwoComponents")
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.