R/tune.splsda.R

#############################################################################################################
# Authors:
#   Florian Rohart, The University of Queensland, The University of Queensland Diamantina Institute, Translational Research Institute, Brisbane, QLD
#   Kim-Anh Le Cao, The University of Queensland, The University of Queensland Diamantina Institute, Translational Research Institute, Brisbane, QLD
#   Benoit Gautier, The University of Queensland, The University of Queensland Diamantina Institute, Translational Research Institute, Brisbane, QLD
#   Francois Bartolo, Institut National des Sciences Appliquees et Institut de Mathematiques, Universite de Toulouse et CNRS (UMR 5219), France
#
# created: 2013
# last modified: 05-10-2017
#
# Copyright (C) 2013
#
# This program is free software; you can redistribute it and/or
# modify it under the terms of the GNU General Public License
# as published by the Free Software Foundation; either version 2
# of the License, or (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program; if not, write to the Free Software
# Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA  02111-1307, USA.
#############################################################################################################


# ========================================================================================================
# tune.splsda: chose the optimal number of parameters per component on a splsda method
# ========================================================================================================

# X: numeric matrix of predictors
# Y: a factor or a class vector for the discrete outcome
# ncomp: the number of components to include in the model. Default to 1.
# test.keepX: grid of keepX among which to chose the optimal one
# already.tested.X: a vector giving keepX on the components that were already tuned
# validation: Mfold or loo cross validation
# folds: if validation=Mfold, how many folds?
# dist: distance to classify samples. see predict
# measure: one of c("overall","BER"). Accuracy measure used in the cross validation processs
# scale: boleean. If scale = TRUE, each block is standardized to zero means and unit variances (default: TRUE).
# auc: calculate AUC
# progressBar: show progress,
# tol: Convergence stopping value.
# max.iter: integer, the maximum number of iterations.
# near.zero.var: boolean, see the internal \code{\link{nearZeroVar}} function (should be set to TRUE in particular for data with many zero values). Setting this argument to FALSE (when appropriate) will speed up the computations
# nrepeat: number of replication of the Mfold process
# logratio: one of "none", "CLR"
# multilevel: repeated measurement. `multilevel' is passed to multilevel(design = ) in withinVariation. Y is ommited and shouldbe included in `multilevel'
# light.output: if FALSE, output the prediction and classification of each sample during each folds, on each comp, for each repeat
# cpus: number of cpus to use. default to no parallel







#' Tuning functions for sPLS-DA method
#'
#' Computes M-fold or Leave-One-Out Cross-Validation scores on a user-input
#' grid to determine optimal values for the sparsity parameters in
#' \code{splsda}.
#'
#'
#' This tuning function should be used to tune the parameters in the
#' \code{splsda} function (number of components and number of variables in
#' \code{keepX} to select).
#'
#' For a sPLS-DA, M-fold or LOO cross-validation is performed with stratified
#' subsampling where all classes are represented in each fold.
#'
#' If \code{validation = "loo"}, leave-one-out cross-validation is performed.
#' By default \code{folds} is set to the number of unique individuals.
#'
#' The function outputs the optimal number of components that achieve the best
#' performance based on the overall error rate or BER. The assessment is
#' data-driven and similar to the process detailed in (Rohart et al., 2016),
#' where one-sided t-tests assess whether there is a gain in performance when
#' adding a component to the model. Our experience has shown that in most case,
#' the optimal number of components is the number of categories in \code{Y} -
#' 1, but it is worth tuning a few extra components to check (see our website
#' and case studies for more details).
#'
#' For sPLS-DA multilevel one-factor analysis, M-fold or LOO cross-validation
#' is performed where all repeated measurements of one sample are in the same
#' fold. Note that logratio transform and the multilevel analysis are performed
#' internally and independently on the training and test set.
#'
#' For a sPLS-DA multilevel two-factor analysis, the correlation between
#' components from the within-subject variation of X and the \code{cond} matrix
#' is computed on the whole data set. The reason why we cannot obtain a
#' cross-validation error rate as for the spls-DA one-factor analysis is
#' because of the dififculty to decompose and predict the within matrices
#' within each fold.
#'
#' For a sPLS two-factor analysis a sPLS canonical mode is run, and the
#' correlation between components from the within-subject variation of X and Y
#' is computed on the whole data set.
#'
#' If \code{validation = "Mfold"}, M-fold cross-validation is performed. How
#' many folds to generate is selected by specifying the number of folds in
#' \code{folds}.
#'
#' If \code{auc = TRUE} and there are more than 2 categories in \code{Y}, the
#' Area Under the Curve is averaged using one-vs-all comparison. Note however
#' that the AUC criteria may not be particularly insightful as the prediction
#' threshold we use in sPLS-DA differs from an AUC threshold (sPLS-DA relies on
#' prediction distances for predictions, see \code{?predict.splsda} for more
#' details) and the supplemental material of the mixOmics article (Rohart et
#' al. 2017). If you want the AUC criterion to be insightful, you should use
#' \code{measure==AUC} as this will output the number of variable that
#' maximises the AUC; in this case there is no prediction threshold from
#' sPLS-DA (\code{dist} is not used). If \code{measure==AUC}, we do not output
#' SD as this measure can be a mean (over \code{nrepeat}) of means (over the
#' categories).
#'
#' BER is appropriate in case of an unbalanced number of samples per class as
#' it calculates the average proportion of wrongly classified samples in each
#' class, weighted by the number of samples in each class. BER is less biased
#' towards majority classes during the performance assessment.
#'
#' More details about the prediction distances in \code{?predict} and the
#' supplemental material of the mixOmics article (Rohart et al. 2017).
#'
#' @param X numeric matrix of predictors. \code{NA}s are allowed.
#' @param Y \code{if(method = 'spls')} numeric vector or matrix of continuous
#' responses (for multi-response models) \code{NA}s are allowed.
#' @param ncomp the number of components to include in the model.
#' @param test.keepX numeric vector for the different number of variables to
#' test from the \eqn{X} data set
#' @param already.tested.X Optional, if \code{ncomp > 1} A numeric vector
#' indicating the number of variables to select from the \eqn{X} data set on
#' the firsts components.
#' @param validation character.  What kind of (internal) validation to use,
#' matching one of \code{"Mfold"} or \code{"loo"} (see below). Default is
#' \code{"Mfold"}.
#' @param folds the folds in the Mfold cross-validation. See Details.
#' @param dist distance metric to use for \code{splsda} to estimate the
#' classification error rate, should be a subset of \code{"centroids.dist"},
#' \code{"mahalanobis.dist"} or \code{"max.dist"} (see Details).
#' @param measure Three misclassification measure are available: overall
#' misclassification error \code{overall}, the Balanced Error Rate \code{BER}
#' or the Area Under the Curve \code{AUC}
#' @param scale boleean. If scale = TRUE, each block is standardized to zero
#' means and unit variances (default: TRUE)
#' @param auc if \code{TRUE} calculate the Area Under the Curve (AUC)
#' performance of the model based on the optimisation measure \code{measure}.
#' @param progressBar by default set to \code{TRUE} to output the progress bar
#' of the computation.
#' @param tol Convergence stopping value.
#' @param max.iter integer, the maximum number of iterations.
#' @param near.zero.var boolean, see the internal \code{\link{nearZeroVar}}
#' function (should be set to TRUE in particular for data with many zero
#' values). Default value is FALSE
#' @param nrepeat Number of times the Cross-Validation process is repeated.
#' @param logratio one of ('none','CLR'). Default to 'none'
#' @param multilevel Design matrix for multilevel analysis (for repeated
#' measurements) that indicates the repeated measures on each individual, i.e.
#' the individuals ID. See Details.
#' @param light.output if set to FALSE, the prediction/classification of each
#' sample for each of \code{test.keepX} and each comp is returned.
#' @param cpus Number of cpus to use when running the code in parallel.
#' @return Depending on the type of analysis performed, a list that contains:
#' \item{error.rate}{returns the prediction error for each \code{test.keepX} on
#' each component, averaged across all repeats and subsampling folds. Standard
#' deviation is also output. All error rates are also available as a list.}
#' \item{choice.keepX}{returns the number of variables selected (optimal keepX)
#' on each component.} \item{choice.ncomp}{returns the optimal number of
#' components for the model fitted with \code{$choice.keepX} }
#' \item{error.rate.class}{returns the error rate for each level of \code{Y}
#' and for each component computed with the optimal keepX}
#'
#' \item{predict}{Prediction values for each sample, each \code{test.keepX},
#' each comp and each repeat. Only if light.output=FALSE}
#' \item{class}{Predicted class for each sample, each \code{test.keepX}, each
#' comp and each repeat. Only if light.output=FALSE}
#'
#' \item{auc}{AUC mean and standard deviation if the number of categories in
#' \code{Y} is greater than 2, see details above. Only if auc = TRUE}
#'
#' \item{cor.value}{only if multilevel analysis with 2 factors: correlation
#' between latent variables.}
#' @author Kim-Anh Lê Cao, Benoit Gautier, Francois Bartolo, Florian Rohart.
#' @seealso \code{\link{splsda}}, \code{\link{predict.splsda}} and
#' http://www.mixOmics.org for more details.
#' @references mixOmics article:
#'
#' Rohart F, Gautier B, Singh A, Lê Cao K-A. mixOmics: an R package for 'omics
#' feature selection and multiple data integration. PLoS Comput Biol 13(11):
#' e1005752
#' @keywords regression multivariate
#' @examples
#'
#' ## First example: analysis with sPLS-DA
#' \dontrun{
#' library(mixOmics.data)
#' X = breast.tumors$gene.exp
#' Y = as.factor(breast.tumors$sample$treatment)
#' tune = tune.splsda(X, Y, ncomp = 1, nrepeat = 10, logratio = "none",
#' test.keepX = c(5, 10, 15), folds = 10, dist = "max.dist",
#' progressBar = TRUE)
#'

#'
#' # 5 components, optimising 'keepX' and 'ncomp'
#' tune = tune.splsda(X, Y, ncomp = 5, test.keepX = c(5, 10, 15),
#' folds = 10, dist = "max.dist", nrepeat = 5, progressBar = TRUE)
#'
#' tune$choice.ncomp
#' tune$choice.keepX
#' plot(tune)
#'
#'
#' ## only tune component 3 and 4
#' # keeping 5 and 10 variables on the first two components respectively
#'
#' tune = tune.splsda(X = X,Y = Y, ncomp = 4,
#' already.tested.X = c(5,10),
#' test.keepX = seq(1,10,2), progressBar = TRUE)
#'
#'
#'
#'
#'
#' ## Second example: multilevel one-factor analysis with sPLS-DA
#'
#' X = vac18$genes
#' Y = vac18$stimulation
#' # sample indicates the repeated measurements
#' design = data.frame(sample = vac18$sample)
#'
#' tune = tune.splsda(X, Y = Y, ncomp = 3, nrepeat = 10, logratio = "none",
#' test.keepX = c(5,50,100),folds = 10, dist = "max.dist", multilevel = design)
#'
#' }
#'
#' @export tune.splsda
tune.splsda = function (X, Y,
ncomp = 1,
test.keepX = c(5, 10, 15),
already.tested.X,
validation = "Mfold",
folds = 10,
dist = "max.dist",
measure = "BER", # one of c("overall","BER")
scale = TRUE,
auc = FALSE,
progressBar = TRUE,
tol = 1e-06,
max.iter = 100,
near.zero.var = FALSE,
nrepeat = 1,
logratio = c('none','CLR'),
multilevel = NULL,
light.output = TRUE,
cpus
)
{    #-- checking general input parameters --------------------------------------#
    #---------------------------------------------------------------------------#

    #------------------#
    #-- check entries --#
    if(!is(X, "matrix"))
    X = as.matrix(X)

    if (length(dim(X)) != 2 || !is.numeric(X))
    stop("'X' must be a numeric matrix.")


    # Testing the input Y
    if (is.null(multilevel))
    {
        if (is.null(Y))
        stop("'Y' has to be something else than NULL.")

        if (is.null(dim(Y)))
        {
            Y = factor(Y)
        }  else {
            stop("'Y' should be a factor or a class vector.")
        }

        if (nlevels(Y) == 1)
        stop("'Y' should be a factor with more than one level")

    } else {
        # we expect a vector or a 2-columns matrix in 'Y' and the repeated measurements in 'multilevel'
        multilevel = data.frame(multilevel)

        if ((nrow(X) != nrow(multilevel)))
        stop("unequal number of rows in 'X' and 'multilevel'.")

        if (ncol(multilevel) != 1)
        stop("'multilevel' should have a single column for the repeated measurements, other factors should be included in 'Y'.")

        if (!is.null(ncol(Y)) && !ncol(Y) %in% c(0,1,2))# multilevel 1 or 2 factors
        stop("'Y' should either be a factor, a single column data.frame containing a factor, or a 2-columns data.frame containing 2 factors.")

        multilevel = data.frame(multilevel, Y)
        multilevel[, 1] = as.numeric(factor(multilevel[, 1])) # we want numbers for the repeated measurements

    }


    #-- progressBar
    if (!is.logical(progressBar))
    stop("'progressBar' must be a logical constant (TRUE or FALSE).", call. = FALSE)


    if (is.null(ncomp) || !is.numeric(ncomp) || ncomp <= 0)
    stop("invalid number of variates, 'ncomp'.")


    #-- validation
    choices = c("Mfold", "loo")
    validation = choices[pmatch(validation, choices)]
    if (is.na(validation))
    stop("'validation' must be either 'Mfold' or 'loo'")

    if (validation == 'loo')
    {
        if (nrepeat != 1)
        warning("Leave-One-Out validation does not need to be repeated: 'nrepeat' is set to '1'.")
        nrepeat = 1
    }

    #-- logratio
    if (length(logratio) > 1)
    logratio = logratio[1]

    if (!logratio %in% c("none","CLR"))
    stop("'logratio must be one of 'none' or 'CLR'")

    #if ((!is.null(already.tested.X)) && (length(already.tested.X) != (ncomp - 1)) )
    #stop("The number of already tested parameters should be NULL or ", ncomp - 1, " since you set ncomp = ", ncomp)

    if (missing(already.tested.X))
    {
        already.tested.X = NULL
    } else {
        if(is.null(already.tested.X) | length(already.tested.X)==0)
        stop("''already.tested.X' must be a vector of keepX values")

        if(is.list(already.tested.X))
        stop("''already.tested.X' must be a vector of keepX values")

        message(paste("Number of variables selected on the first", length(already.tested.X), "component(s):", paste(already.tested.X,collapse = " ")))
    }

    if(length(already.tested.X) >= ncomp)
    stop("'ncomp' needs to be higher than the number of components already tuned, which is length(already.tested.X)=",length(already.tested.X) , call. = FALSE)

    #-- measure
    choices = c("BER", "overall","AUC")
    measure = choices[pmatch(measure, choices)]
    if (is.na(measure))
    stop("'measure' must be either 'BER', 'overall' or 'AUC' ")

    if (any(is.na(validation)) || length(validation) > 1)
    stop("'validation' should be one of 'Mfold' or 'loo'.", call. = FALSE)

    #-- test.keepX
    if (is.null(test.keepX) | length(test.keepX) == 1 | !is.numeric(test.keepX))
    stop("'test.keepX' must be a numeric vector with more than two entries", call. = FALSE)

    # remove some test.keepX if needed
    if (any(test.keepX > ncol(X))){
        test.keepX = test.keepX[-which(test.keepX>ncol(X))]
        if (length(test.keepX) < 2)
        stop("Some entries of 'test.keepX' were higher than the number of
        variables in 'X' and were removed, the resulting 'test.keepX' has now
        too few entries (<2)", call. = FALSE)
    }


    if(!missing(cpus))
    {
        if(!is.numeric(cpus) | length(cpus)!=1)
        stop("'cpus' must be a numerical value")

        parallel = TRUE
        cl = makeCluster(cpus, type = "SOCK")
        #clusterExport(cl, c("splsda","selectVar"))
        clusterEvalQ(cl, library(mixOmics))

        if(progressBar == TRUE)
        message(paste("As code is running in parallel, the progressBar will only show 100% upon completion of each nrepeat/ component.",sep=""))

    } else {
        parallel = FALSE
        cl = NULL
    }

    # add colnames and rownames if missing
    X.names = dimnames(X)[[2]]
    if (is.null(X.names))
    {
        X.names = paste0("X", 1:ncol(X))
        dimnames(X)[[2]] = X.names
    }

    ind.names = dimnames(X)[[1]]
    if (is.null(ind.names))
    {
        ind.names = 1:nrow(X)
        rownames(X)  = ind.names
    }

    if (length(unique(rownames(X))) != nrow(X))
    stop("samples should have a unique identifier/rowname")
    if (length(unique(X.names)) != ncol(X))
    stop("Unique indentifier is needed for the columns of X")

    rm(X.names);rm(ind.names)

    #-- end checking --#
    #------------------#


    #---------------------------------------------------------------------------#
    #-- logration + multilevel approach ----------------------------------------#
    # we can do logratio and multilevel on the whole data as these transformation are done per sample
    X = logratio.transfo(X = X, logratio = logratio)

    if (!is.null(multilevel)) # logratio is applied per sample, multilevel as well, so both can be done on the whole data
    {

        Xw = withinVariation(X, design = multilevel)
        X = Xw

        #-- Need to set Y variable for 1 or 2 factors
        Y = multilevel[, -1, drop=FALSE]
        if (ncol(Y) >= 1)
        Y = apply(Y, 1, paste, collapse = ".")  #  paste is to combine in the case we have 2 levels

        Y = as.factor(Y)
    }
    #-- logration + multilevel approach ----------------------------------------#
    #---------------------------------------------------------------------------#


    #---------------------------------------------------------------------------#
    #-- NA calculation      ----------------------------------------------------#

    misdata = c(X=anyNA(X), Y=FALSE) # Detection of missing data. we assume no missing values in the factor Y

    if (any(misdata))
    {
        is.na.A = is.na(X)

        #ind.NA = which(apply(is.na.A, 1, sum) > 0) # calculated only once
        #ind.NA.col = which(apply(is.na.A, 2, sum) >0) # indice of the col that have missing values. used in the deflation
    } else {
        is.na.A = NULL
        #ind.NA = ind.NA.col = NULL
    }
    #-- NA calculation      ----------------------------------------------------#
    #---------------------------------------------------------------------------#



    test.keepX = sort(unique(test.keepX)) #sort test.keepX so as to be sure to chose the smallest in case of several minimum
    names(test.keepX) = test.keepX
    # if some components have already been tuned (eg comp1 and comp2), we're only tuning the following ones (comp3 comp4 .. ncomp)
    if ((!is.null(already.tested.X)))
    {
        comp.real = (length(already.tested.X) + 1):ncomp
    } else {
        comp.real = 1:ncomp
    }


    choices = c("all", "max.dist", "centroids.dist", "mahalanobis.dist")
    dist = match.arg(dist, choices, several.ok = TRUE)


    mat.error.rate = list()
    error.per.class = list()
    AUC = list()

    if(nrepeat>1 & all(measure != "AUC")){
        mat.sd.error = matrix(0,nrow = length(test.keepX), ncol = ncomp-length(already.tested.X),
        dimnames = list(c(test.keepX), c(paste0('comp', comp.real))))
    } else{
        mat.sd.error=NULL
    }
    mat.mean.error = matrix(nrow = length(test.keepX), ncol = ncomp-length(already.tested.X),
    dimnames = list(c(test.keepX), c(paste0('comp', comp.real))))

    # first: near zero var on the whole data set
    if(near.zero.var == TRUE)
    {
        nzv = nearZeroVar(X)
        if (length(nzv$Position > 0))
        {
            warning("Zero- or near-zero variance predictors.\nReset predictors matrix to not near-zero variance predictors.\nSee $nzv for problematic predictors.")
            X = X[, -nzv$Position, drop=TRUE]

            if(ncol(X)==0)
            stop("No more predictors after Near Zero Var has been applied!")

        }
    }

    if (is.null(multilevel) | (!is.null(multilevel) && ncol(multilevel) == 2))
    {
        if(light.output == FALSE)
        prediction.all = class.all = list()

        if(auc)
        {
            auc.mean.sd=list()
            if(light.output == FALSE)
            auc.all=list()
        }

        class.object=c("mixo_splsda","DA")
        if(!missing(cpus))
            clusterExport(cl, c("X","Y","is.na.A","misdata","scale","near.zero.var","class.object","test.keepX"),envir=environment())

        error.per.class.keepX.opt = list()
        if(all(measure != "AUC")){
            error.per.class.keepX.opt.mean = matrix(0, nrow = nlevels(Y), ncol = length(comp.real),
            dimnames = list(c(levels(Y)), c(paste0('comp', comp.real))))
        } else {
            error.per.class.keepX.opt.mean=NULL
        }
        # successively tune the components until ncomp: comp1, then comp2, ...
        for(comp in 1:length(comp.real))
        {

            if (progressBar == TRUE)
            cat("\ncomp",comp.real[comp], "\n")

            result = MCVfold.spls (X, Y, multilevel = multilevel, validation = validation, folds = folds, nrepeat = nrepeat, ncomp = 1 + length(already.tested.X),
            choice.keepX = already.tested.X,
            test.keepX = test.keepX, test.keepY = nlevels(Y), measure = measure, dist = dist, scale=scale,
            near.zero.var = near.zero.var, progressBar = progressBar, tol = tol, max.iter = max.iter, auc = auc,
            cl = cl, parallel = parallel,
            misdata = misdata, is.na.A = is.na.A, class.object=class.object)

            # in the following, there is [[1]] because 'tune' is working with only 1 distance and 'MCVfold.splsda' can work with multiple distances
            mat.error.rate[[comp]] = result[[measure]]$mat.error.rate[[1]]
            mat.mean.error[, comp]=result[[measure]]$error.rate.mean[[1]]
            if (!is.null(result[[measure]]$error.rate.sd[[1]]))
            mat.sd.error[, comp]=result[[measure]]$error.rate.sd[[1]]

            # confusion matrix for keepX.opt
            if (all(measure!="AUC")){
                error.per.class.keepX.opt[[comp]]=result[[measure]]$confusion[[1]]
                error.per.class.keepX.opt.mean[, comp]=apply(result[[measure]]$confusion[[1]], 1, mean)
            }

            # best keepX
            already.tested.X = c(already.tested.X, result[[measure]]$keepX.opt[[1]])

            if(light.output == FALSE)
            {
                #prediction of each samples for each fold and each repeat, on each comp
                class.all[[comp]] = result$class.comp[[1]]
                prediction.all[[comp]] = result$prediction.comp
            }

            if(auc)
            {
                auc.mean.sd[[comp]] = result$auc
                if(light.output == FALSE)
                auc.all[[comp]] = result$auc.all
            }

        } # end comp
        if (parallel == TRUE)
        stopCluster(cl)
        names(mat.error.rate) = c(paste0('comp', comp.real))
        if (all(measure!="AUC"))
            names(error.per.class.keepX.opt) = c(paste0('comp', comp.real))

        names(already.tested.X) = c(paste0('comp', 1:ncomp))

        if (progressBar == TRUE)
        cat('\n')

        # calculating the number of optimal component based on t.tests and the error.rate.all, if more than 3 error.rates(repeat>3)
        if(nrepeat > 2 & length(comp.real) >1 & all(measure!="AUC"))
        {
            keepX = already.tested.X
            error.keepX = NULL
            for(comp in 1:length(comp.real))
            {
                ind.row = match(keepX[[comp.real[comp]]],test.keepX)
                error.keepX = cbind(error.keepX, mat.error.rate[[comp]][ind.row,])
            }
            colnames(error.keepX) = c(paste0('comp', comp.real))

            opt = t.test.process(error.keepX)

            ncomp_opt = comp.real[opt]
        }  else if(nrepeat > 2 & length(comp.real) >1 & all(measure=="AUC")){
            #hacking t.test.process for AUC
            keepX = already.tested.X
            error.keepX = NULL
            for(comp in 1:length(comp.real))
            {
                ind.row = match(keepX[[comp.real[comp]]],test.keepX)
                error.keepX = cbind(error.keepX, mat.error.rate[[comp]][ind.row,])
            }
            colnames(error.keepX) = c(paste0('comp', comp.real))

            #1- to change the AUC to an 'error' and check for decrease
            opt = t.test.process(1-error.keepX)

            ncomp_opt = comp.real[opt]
        } else {
            ncomp_opt = error.keepX = NULL
        }

        result = list(
        error.rate = mat.mean.error,
        error.rate.sd = mat.sd.error,
        error.rate.all = mat.error.rate,
        choice.keepX = already.tested.X,
        choice.ncomp = list(ncomp = ncomp_opt, values = error.keepX),
        error.rate.class = error.per.class.keepX.opt.mean,
        error.rate.class.all = error.per.class.keepX.opt)

        if(light.output == FALSE)
        {
            names(class.all) = names(prediction.all) = c(paste0('comp', comp.real))
            result$predict = prediction.all
            result$class = class.all
        }
        if(auc)
        {

            #we add the AUC outputs only if it was not the measure
            #otherwise there is twice the same output
            if(all(measure != "AUC")){
                names(auc.mean.sd) = c(paste0('comp', comp.real))
                result$auc = auc.mean.sd
            }
            if(light.output == FALSE)
            {
                names(auc.all) = c(paste0('comp', comp.real))
                result$auc.all =auc.all
            }
        }
        result$measure = measure
        result$call = match.call()

        class(result) = "tune.splsda"

        return(result)
    } else {
        # if multilevel with 2 factors, we can not do as before because withinvariation depends on the factors, we maximase a correlation
        message("For a two-factor analysis, the tuning criterion is based on the maximisation of the correlation between the components on the whole data set")

        cor.value = vector(length = length(test.keepX))
        names(cor.value) = test.keepX

        for (i in 1:length(test.keepX))
        {
            spls.train = mixOmics2::splsda(X, Y, ncomp = ncomp, keepX = c(already.tested.X, test.keepX[i]), logratio = logratio, near.zero.var = FALSE, mode = "regression")

            # Note: this is performed on the full data set
            # (could be done with resampling (bootstrap) (option 1) and/or prediction (option 2))
            cor.value[i] = cor(spls.train$variates$X[, ncomp], spls.train$variates$Y[, ncomp])
            #
        }
        return(list(cor.value = cor.value))

    }
}
ajabadi/mixOmics2 documentation built on Aug. 9, 2019, 1:08 a.m.