Description Usage Arguments Value See Also Examples
modeGradient
gives the gradient of the objective function for a
model. By default the objective function (modelObjective
) is
a negative log likelihood (modelLogLikelihood
).
1 2 3 | modelObjective(params, model, ...)
modelLogLikelihood(model)
modelGradient(params, model, ...)
|
params |
parameter vector to evaluate at. |
model |
model structure. |
... |
optional additional arguments. |
g |
the gradient of the error function to be minimised. |
v |
the objective function value (lower is better). |
ll |
the log-likelihood value. |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 | # Load a mmgmos preprocessed fragment of the Drosophila developmental
# time series
data(drosophila_gpsim_fragment)
# The probe identifier for TF 'twi'
twi <- "143396_at"
# The probe identifier for the target gene
targetProbe <- "152715_at"
# Create the model but do not optimise
model <- GPLearn(drosophila_gpsim_fragment,
TF=twi, targets=targetProbe,
useGpdisim=TRUE, quiet=TRUE,
dontOptimise=TRUE)
params <- modelExtractParam(model, only.values=FALSE)
ll <- modelLogLikelihood(model)
paramValues <- modelExtractParam(model, only.values=TRUE)
modelGradient(paramValues, model)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.