R/EstDimRMTv2.R

Defines functions EstDimRMTv2

EstDimRMTv2 <- function(data.m) {
  GenPlot <- function(thdens.o,estdens.o,evalues.v){
      minx <- min(min(thdens.o$lambda),min(evalues.v));
      maxx <- max(max(thdens.o$lambda),max(evalues.v));
      miny <- min(min(thdens.o$dens),min(estdens.o$y));
      maxy <- max(max(thdens.o$dens),max(estdens.o$y));
    }
  
  thdens <- function(Q,sigma2,ns){
      
      lambdaMAX <- sigma2*(1+1/Q + 2*sqrt(1/Q));
      lambdaMIN <- sigma2*(1+1/Q - 2*sqrt(1/Q));
      
      delta <- lambdaMAX - lambdaMIN;#  print(delta);
      
      roundN <- 3;
      step <- round(delta/ns,roundN);
      while(step==0){
        roundN <- roundN+1;
        step <- round(delta/ns,roundN);
      }
      
      lambda.v <- seq(lambdaMIN,lambdaMAX,by=step);
      dens.v <- vector();
      ii <- 1;
      for(i in lambda.v){
        dens.v[ii] <- (Q/(2*pi*sigma2))*sqrt( (lambdaMAX-i)*(i-lambdaMIN) )/i;
        ii <- ii+1;
      }
      
      return(list(min=lambdaMIN,max=lambdaMAX,step=step,lambda=lambda.v,dens=dens.v));
    }
  
  
  ### standardise matrix
  M <- data.m;
  for(c in 1:ncol(M)){
    M[,c] <- (data.m[,c]-mean(data.m[,c]))/sqrt(var(data.m[,c]));
  }
  sigma2 <- var(as.vector(M));
  Q <- nrow(data.m)/ncol(data.m);
  thdens.o <- thdens(Q,sigma2,ncol(data.m));
  
  C <- 1/nrow(M) * t(M) %*% M;
  
  eigen.o <- eigen(C,symmetric=TRUE);
  estdens.o <- density(eigen.o$values,from=min(eigen.o$values),to=max(eigen.o$values),cut=0);
  
  GenPlot(thdens.o,estdens.o,eigen.o$values);
  intdim <- length(which(eigen.o$values > thdens.o$max));
  
  return(list(cor=C,dim=intdim,estdens=estdens.o,thdens=thdens.o));
}
YuanTian1991/ChAMP documentation built on Feb. 21, 2023, 1:13 p.m.