R/Block.GUI.R

Defines functions Block.GUI

Documented in Block.GUI

if(getRversion() >= "3.1.0") utils::globalVariables(c("myBlock","myLoad","myNorm","probe.features.epic","probe.features","Value","ID","Sample","aggregate","x","y","fitted","loess"))

Block.GUI <- function(Block=myBlock,
                      beta=myNorm,
                      pheno=myLoad$pd$Sample_Group,
                      runDMP=TRUE,
                      compare.group=NULL,
                      arraytype="450K")
{
  # if(arraytype == "EPIC") data(probe.features.epic) else data(probe.features)
  if(arraytype %in% c("EPIC", "EPICv2")) {
    data("probe.features.epicv2")
  } else if(arraytype == "EPICv1") {
    data("probe.features.epicv1")
  } else if(arraytype == "450K") { 
    data("probe.features")
  } else (
    stop("arraytype must be `EPICv2`, `EPICv1`, `450K`")
  )
  
  probe.features <- probe.features[names(Block$allCLID.v),]
  
  design <- model.matrix( ~ 0 + pheno)
  fit <- lmFit(Block$avbetaCL.m, design)
  fit2 <- eBayes(fit)
  clusterDMP <- topTable(fit2,coef=1,number=nrow(Block$avbetaCL.m),adjust.method="BH")
  
  B2 <- makeGRangesFromDataFrame(Block$Block[,1:4])
  A2 <- makeGRangesFromDataFrame(data.frame(seqnames=Block$posCL.m[,2],start=Block$posCL.m[,1],end=Block$posCL.m[,1]))
  C <- as.data.frame(findOverlaps(B2,A2))
  clustertmp <- data.frame(Blockindex=paste("Block",C$queryHits,sep="_"),Block$posCL.m[C$subjectHits,2:1])
  clustertmp <- data.frame(clustertmp,clusterDMP[rownames(clustertmp),])
  
  message("Generation CpG information")
  cpgtmp <- probe.features[names(Block$allCLID.v[which(Block$allCLID.v %in% rownames(clustertmp))]),c(1,2,5,6,7)]
  
  if(runDMP)
  {
    tmpbeta <- beta
    tmppheno <- pheno
    if(class(pheno)=="numeric") {
      message("  Your pheno parameter is numeric, champ.DMP() function would calculate linear regression for your CpGs.")
    } else {
      message("  You pheno is ",class(pheno)," type.")
      message("    Your pheno information contains following groups. >>")
      sapply(unique(pheno),function(x) message("    <",x,">:",sum(pheno==x)," samples."))
      
      if(length(unique(pheno))==2) {
        message("  Your pheno contains EXACTLY two phenotypes, which is good, compare.group is not needed.")
      } else {
        message("  Your pheno contains more than 2 phenotypes, please use compare.group to specify only two of them here.")
        if(is.null(compare.group)){
          stop("  compare.group is needed here, please specify compare.group.")
        } else if (sum(compare.group %in% unique(pheno))==2) {
          message("  Your compare.group is in accord with your pheno, which is good, now we are about to extract information for your compare.group.")
          tmpbeta <- beta[,which(pheno %in% compare.group)]
          tmppheno <- pheno[which(pheno %in% compare.group)]
        } else {
          stop("  Seems your compare.group is not in accord with your pheno, please recheck your pheno and your compare.group.")
        }
      }
    }
    message("Calculating DMP")
    DMP <- champ.DMP(beta=tmpbeta,
                     pheno=tmppheno,
                     adjPVal=1,
                     adjust.method="BH",
                     compare.group=compare.group,
                     arraytype=arraytype)
    cpgDMP <- DMP[[1]]
    cpgtmp <- data.frame(cpgtmp,cpgDMP[rownames(cpgtmp),c(1,3,4,5)])
  }
  
  
  cpgtmp <- data.frame(Clusterindex=Block$allCLID.v[rownames(cpgtmp)],cpgtmp)
  cpgtmp <- data.frame(Blockindex=clustertmp[as.character(cpgtmp$Clusterindex),"Blockindex"],cpgtmp)
  cpgtmp <- cpgtmp[order(cpgtmp$Blockindex,cpgtmp$MAPINFO),]
  
  innerblockplot <- function(G,cpgidf,block.idx)
  {
    message("<< Generating dmrplot >>")
    
    for(i in 1:length(G)) G[[i]] <- data.frame(G[[i]],pheno=names(G)[i])
    X <- do.call(rbind,G)
    X <- cbind(X,showtext=paste("cpgID:",X$ID," Sample:",X$Sample,sep=""))
    p <- plot_ly()
    p <- add_trace(p,data=X, x=~pos, y=~Value,type="scatter", mode = "markers", text =~showtext,color=~pheno,marker=list(opacity = 0.6,size = 4))
    
    message("<< Dots Plotted >>")
    
    Fit <- lapply(G,function(h) data.frame(pos=unique(h$pos),ID=unique(h$ID),Mean=aggregate(h$Value,by=list(h$pos),mean)[,2]))
    for(i in 1:length(Fit)) Fit[[i]] <- data.frame(Fit[[i]],pheno=paste(names(Fit)[i],"Mean"))
    df <- data.frame(x = unlist(lapply(Fit, "[[", "pos")),
                     y = unlist(lapply(Fit, "[[", "Mean")),
                     ID = unlist(lapply(Fit, "[[", "ID")),
                     cut = unlist(lapply(Fit, "[[", "pheno")))
    
    p <- add_trace(p,data=df, x =~x, y =~y, text =~ID, color =~cut,type="scatter", mode="lines+markers",line = list(shape = "linear",width = 3,opacity = 0.3),marker=list(size = 1))
    
    message("<< Mean line Plotted >>")
    
    Fit2 <- lapply(G,function(h) data.frame(pos=unique(h$pos),ID=unique(h$ID),Fitted=unique(fitted(loess(h$Value ~ h$pos)))))
    for(i in 1:length(Fit2)) Fit2[[i]] <- data.frame(Fit2[[i]],pheno=paste(names(Fit2)[i],"Loess"))
    df2 <- data.frame(x = unlist(lapply(Fit2, "[[", "pos")),
                      y = unlist(lapply(Fit2, "[[", "Fitted")),
                      ID = unlist(lapply(Fit2, "[[", "ID")),
                      cut = unlist(lapply(Fit2, "[[", "pheno")))
    p <- add_trace(p,data=df2, x =~x, y =~y, text =~ID, color =~cut, type="scatter",line =list(shape ="spline",width=3,opacity=0.3,dash = "dash"),marker=list(size = 1))
    
    message("<< Loess line Plotted >>")
    
    if(!is.null(cpgidf))
      p <- add_trace(p,data=cpgidf,x=~pos,y=~y,text=~ID,type="scatter",mode="markers",name="CpG Islands",marker=list(opacity = 0.6,size = 10,color="#8b3a62"))
    p <- layout(p, title = paste("Block",block.idx,sep="_"))
  }
  innertestplot <- function()
  {
    plot_ly(x=1:10,y=1:10)
  }
  
  app <- shinyApp(
    ui = fluidPage(
      tags$head(tags$style("#blockplot{height:40vh !important;}")),
      
      theme = shinytheme("readable"),
      titlePanel("Block Overview"),
      
      sidebarLayout(
        sidebarPanel(
          br(),
          width=3,
          sliderInput("pvaluebin","P value Cutoff:",min = 0,max = 1,step = 0.025,value = 0.05),
          sliderInput("mincluserbin","Min Number Clusters:",min = 1,max = 350,step = 1,value = 100),
          actionButton("go", "Submit"),
          
          br(),
          br(),
          br(),
          sliderInput("blockbin","Block Index:",min = 1,max = nrow(Block$Block),step = 1,value = 1),
          actionButton("blocksearch", "Submit")
        ),#sidebarPanel
        
        mainPanel( 
          tabsetPanel(
            tabPanel("Blocktable",
                     align = "left",
                     div(DT::dataTableOutput("blocktable"), style = "font-size:75%")
            ),
            tabPanel("CpGtable",
                     align = "left",
                     div(DT::dataTableOutput("cpgtable"), style = "font-size:75%")
            ),
            tabPanel("Blockplot",
                     align = "center",
                     br(),
                     fluidRow(
                       align = "center",
                       br(),
                       column(width = 12,
                              align = "left",
                              div(DT::dataTableOutput("clustertable"), style = "font-size:75%")
                       ),#column
                       column(width = 12,
                              align = "center",
                              plotlyOutput("blockplot")
                       )#column
                     )#fluidRow
            )
          )#tabsetPanel
        )#mainPanel
      )#sidebarLayout
    ),#ui
    server = function(input, output){
      
      Block_repalce <- eventReactive(input$blocksearch,
                                     {
                                       gc()
                                       pvalueCutoff <- as.numeric(input$pvaluebin)
                                       mincluserCutoff <- as.numeric(input$mincluserbin)
                                       block.idx <- as.numeric(input$blockbin)
                                       
                                       index <- which(Block$posCL.m[,"Chr"] == Block$Block[block.idx,"chr"] & 
                                                        Block$posCL.m[,"Pos"] >= Block$Block[block.idx,"start"] & 
                                                        Block$posCL.m[,"Pos"] <= Block$Block[block.idx,"end"])
                                       
                                       clustersinblock <- clustertmp[which(clustertmp$Blockindex==paste("Block",block.idx,sep="_")),] 
                                       cpg <- myBlock$allCLID.v[which(myBlock$allCLID.v %in% rownames(clustersinblock))]
                                       
                                       cpg.pos <- aggregate(probe.features[names(cpg),"MAPINFO"],by=list(cpg),function(x) c(min(x),max(x),max(x)-min(x)))
                                       cpg.pos.final <- cpg.pos[,2]
                                       rownames(cpg.pos.final) <- cpg.pos[,1]
                                       colnames(cpg.pos.final) <- c("Start","End","Width")
                                       
                                       cpg.gene <- aggregate(probe.features[names(cpg),"gene"],by=list(cpg),function(x) paste(unique(x),collapse=","))
                                       cpg.gene.final <- cpg.gene[,2]
                                       names(cpg.gene.final) <- cpg.gene[,1]
                                       
                                       clustersinblock <- data.frame(clustersinblock[,1:3],
                                                                     cpg.pos.final[rownames(clustersinblock),],
                                                                     Number=table(cpg)[rownames(clustersinblock)],
                                                                     gene=cpg.gene.final[rownames(clustersinblock)],
                                                                     clustersinblock[4:9])
                                       
                                       OSindex <- index[which(substr(names(index),1,2)=="OS")]
                                       CPGIindex <- index[which(substr(names(index),1,2)=="CP")]
                                       SHindex <- index[which(substr(names(index),1,2)=="SH")]
                                       
                                       Group <- split(as.data.frame(t(Block$avbetaCL.m[OSindex,])),pheno)
                                       CPGIpos <- Block$posCL.m[CPGIindex,1]
                                       G <- lapply(Group,function(x) t(x))
                                       G <- lapply(G,function(h) data.frame(Sample=rep(colnames(h),each=nrow(h)),ID=rep(rownames(h),ncol(h)),pos=rep(Block$posCL.m[OSindex,1],ncol(h)),Value=as.vector(h)))
                                       
                                       if(length(CPGIindex)>0)
                                         cpgidf <- data.frame(ID=rownames(Block$posCL.m)[CPGIindex],pos=Block$posCL.m[CPGIindex,1],y=1)
                                       else
                                         cpgidf=NULL
                                       
                                       list(pvalueCutoff=pvalueCutoff,
                                            mincluserCutoff=mincluserCutoff,
                                            G=G,
                                            cpgidf=cpgidf,
                                            block.idx=block.idx,
                                            clustersinblock=clustersinblock)
                                     })
      Cutoff_repalce <- eventReactive(input$go,
                                      {
                                        gc()
                                        pvalueCutoff <- as.numeric(input$pvaluebin)
                                        mincluserCutoff <- as.numeric(input$mincluserbin)
                                        myblock <- Block$Block[which(Block$Block$p.valueArea <= pvalueCutoff & Block$Block$L >= mincluserCutoff),]
                                        mycpgtable <- cpgtmp[which(cpgtmp$Blockindex %in% rownames(myblock)),]
                                        
                                        list(pvalueCutoff=pvalueCutoff,
                                             mincluserCutoff=mincluserCutoff,
                                             myblock=myblock,
                                             mycpgtable=mycpgtable)
                                      })
      
      output$blocktable <- DT::renderDataTable({
        datatable <- Cutoff_repalce()$myblock
        datatable <- data.frame(ID=rownames(datatable),datatable)
      },options = list(pageLength=20))
      output$cpgtable <- DT::renderDataTable({
        datatable <- Cutoff_repalce()$mycpgtable
        datatable <- data.frame(ID=rownames(datatable),datatable)
      },options = list(pageLength=20))
      output$blockplot <- renderPlotly({
        innerblockplot(Block_repalce()$G,Block_repalce()$cpgidf,Block_repalce()$block.idx)
      })
      output$clustertable <- DT::renderDataTable({
        datatable <- Block_repalce()$clustersinblock
        datatable <- data.frame(ID=rownames(datatable),datatable)
      },options = list(pageLength=8))
      
    }
  )
  runApp(app)
}
YuanTian1991/ChAMP documentation built on Feb. 21, 2023, 1:13 p.m.