R/utilities.R

Defines functions get_param_change_message get_ggrepel_segsize quiet default_labeller get_label_diss plotting.clusterProfile extract_geneSets update_n fc_readable .cal_jc_similarity overlap_ratio color_palette prepare_pie_data prepare_pie_category prepare_pie_gene as.data.frame.compareClusterResult which_scale_fun set_enrichplot_color get_enrichplot_color autofacet

Documented in autofacet color_palette plotting.clusterProfile set_enrichplot_color

##' automatically split barplot or dotplot into several facets
##' 
##'
##' @param by one of 'row' or 'column'
##' @param scales wether 'fixed' or 'free'
##' @param levels set facet levels
##' @return a ggplot object
##' @export
autofacet <- function(by = 'row', scales = "free", levels = NULL) {
    structure(list(by = by,
                scales = scales,
                levels = levels), 
            class = "autofacet")
}

get_enrichplot_color <- function(n = 2) {
    colors <- getOption("enrichplot.colours")
    if (!is.null(colors)) return(colors)

    if (n != 2 && n != 3) stop("'n' should be 2 or 3")

    colors = c("#e06663", "#327eba")
    if (n == 2) return(colors)

    if (n == 3) return(c(colors[1], "white", colors[2]))
}

##' helper function to set color for enrichplot
##' 
##' 
##' @title set_enrichplot_color
##' @param colors user provided color vector
##' @param type one of 'color', 'colour' or 'fill'
##' @param name name of the color legend
##' @param .fun force to use user provided color scale function
##' @param reverse whether reverse the color scheme, default is TRUE as it is more significant for lower pvalue
##' @param ... additional parameter that passed to the color scale function
##' @return a color scale
##' @importFrom ggplot2 scale_fill_continuous
##' @importFrom ggplot2 scale_color_continuous
##' @importFrom ggplot2 scale_fill_gradientn
##' @importFrom ggplot2 scale_color_gradientn
##' @export
set_enrichplot_color <- function(colors = get_enrichplot_color(2), 
                                type = "color", name = NULL, .fun = NULL, reverse=TRUE, ...) {

    type <- match.arg(type, c("color", "colour", "fill"))
    if (!reverse) colors = rev(colors)
    n <- length(colors)
    if (n < 2) {
        stop("'colors' should be of length >= 2")
    } else if (n == 2) {
        params <- list(low = colors[1], high = colors[2])
        fn_suffix <- "continuous"
    } else if (n == 3) {
        params <- list(low = colors[1], mid = colors[2], high = colors[3])
        fn_suffix <- "gradient2"
    } else {
        params <- list(colors = colors) 
        fn_suffix <- "gradientn"   
    }
    
    if (!is.null(.fun)) {
        if (n == 3) { 
            # should determine parameter for user selected functions: 'gradient2' or 'gradientn'
            fn_type <- which_scale_fun(.fun)
            if (fn_type == "gradientn") {
                 params <- list(colors = colors) 
            } else {
                params <- list(low = colors[1], mid = colors[2], high = colors[3])
            }
        }
    } else {
        fn <- sprintf("scale_%s_%s", type, fn_suffix)
        .fun <- getFromNamespace(fn, "ggplot2")
    }

    params$guide <- guide_colorbar(reverse=reverse, order=1)
    params$name <- name # no legend name setting by default as 'name = NULL'

    params <- modifyList(params, list(...))

    do.call(.fun, params)
}


which_scale_fun <- function(.fun) {
    params <- args(.fun) |> as.list() |> names()
    if ("colours" %in% params) {
        return("gradientn")
    }
    if ("mid" %in% params) {
        return("gradient2")
    }
    # maybe need to determine whether is continuous or discrete
    return("continuous")
}

##' @method as.data.frame compareClusterResult
##' @export
as.data.frame.compareClusterResult <- function(x, ...) {
    as.data.frame(x@compareClusterResult, ...)
}


##' Prepare pie data for genes in cnetplot.
##' The function only works for compareClusterResult
##'
##' @importFrom DOSE geneID
##' @importFrom rlang check_installed
##' @param y a data.frame converted from compareClusterResult
##' @return a data.frame
##' @noRd
prepare_pie_gene <- function(y) {
    check_installed('tibble', 'for `prepare_pie_gene()`.')
    gene_pie <- tibble::as_tibble(y[,c("Cluster", "Description", "geneID")])
    gene_pie$geneID <- strsplit(gene_pie$geneID, '/')
    gene_pie2 <- as.data.frame(tidyr::unnest(gene_pie, cols=geneID))
    gene_pie2 <- unique(gene_pie2)
    prepare_pie_data(gene_pie2, pie =  "equal", type = "gene")
}


##' Prepare pie data for categories in cnetplot/emapplot.
##' The function only works for compareClusterResult
##'
##' @param enrichDf a data.frame converted from compareClusterResult
##' @param pie proportion of clusters in the pie chart, one of 'equal' (default)
##' or 'Count'
##' @return a data.frame
##' @noRd
prepare_pie_category <- function(enrichDf, pie = "equal") {
    pie <- match.arg(pie, c("equal", "count", "Count"))
    if (pie == "count") pie <- "Count"

    pie_data <- enrichDf[,c("Cluster", "Description", "Count")]
    pie_data[,"Description"] <- as.character(pie_data[,"Description"])
    prepare_pie_data(pie_data, pie = pie)
}




prepare_pie_data <- function(pie_data, pie = "equal",type = "category") {
    if(type == "category"){
        ID_unique <- unique(pie_data[,2])
    } else {
        ID_unique <- unique(pie_data[,3])
    }

    Cluster_unique <- unique(pie_data[,1])
    ID_Cluster_mat <- matrix(0, nrow = length(ID_unique), ncol = length(Cluster_unique))
    rownames(ID_Cluster_mat) <- ID_unique
    colnames(ID_Cluster_mat) <- Cluster_unique
    ID_Cluster_mat <- as.data.frame(ID_Cluster_mat, stringAsFactors = FALSE)
    if(pie == "Count") {
        for(i in seq_len(nrow(pie_data))) {
            ID_Cluster_mat[pie_data[i,2],pie_data[i,1]] <- pie_data[i,3]
        }
        for(kk in seq_len(ncol(ID_Cluster_mat))) {
            ID_Cluster_mat[,kk] <- as.numeric(ID_Cluster_mat[,kk])
        }
        return(ID_Cluster_mat)
    }
    for(i in seq_len(nrow(pie_data))) {
        if(type == "category"){
            ID_Cluster_mat[pie_data[i,2],pie_data[i,1]] <- 1
        } else {
            ID_Cluster_mat[pie_data[i,3],pie_data[i,1]] <- 1
        }

    }
    return(ID_Cluster_mat)
}


##' create color palette for continuous data
##'
##'
##' @title color_palette
##' @param colors colors of length >=2
##' @return color vector
##' @importFrom rlang check_installed
##' @export
##' @examples
##' color_palette(c("red", "yellow", "green"))
##' @author guangchuang yu
color_palette <- function(colors) {
    # has_package("grDevices")
    check_installed('grDevices', 'for `color_palette()`.')
    grDevices::colorRampPalette(colors)(n = 299)
}

enrichplot_point_shape <- ggfun:::enrichplot_point_shape

sig_palette <- color_palette(c("red", "yellow", "blue"))

heatmap_palette <- color_palette(c("red", "yellow", "green"))

overlap_ratio <- function(x, y) {
    x <- unlist(x)
    y <- unlist(y)
    length(intersect(x, y))/length(unique(c(x,y)))
}

.cal_jc_similarity <- function(gsetlist, id = NULL, name=NULL){
    if (is.null(id)) {
        id <- names(gsetlist)
    }
    n <- length(id)
    w <- matrix(NA, nrow=n, ncol=n)
    if (is.null(name)) {
        name <- id 
    }
    colnames(w) <- rownames(w) <- name
    for (i in seq_len(n-1)) {
        for (j in (i+1):n) {
            w[i,j] <- overlap_ratio(gsetlist[id[i]], gsetlist[id[j]])
        }
    }
    w[lower.tri(w)] <- t(w)[lower.tri(t(w))]
    diag(w) <- 1    
    return(w)
}

fc_readable <- function(x, foldChange = NULL) {
    if (is.null(foldChange))
        return(NULL)

    if (x@readable && x@keytype != "SYMBOL") {
        gid <- names(foldChange)
        if (is(x, 'gseaResult')) {
            ii <- gid %in% names(x@geneList)
        } else {
            ii <- gid %in% x@gene
        }
        gid[ii] <- x@gene2Symbol[gid[ii]]
        names(foldChange) <- gid
    }
    return(foldChange)
}

# fc_palette <- function(fc) {
    # if (all(fc > 0, na.rm=TRUE)) {
        # palette <- color_palette(c("blue", "red"))
    # } else if (all(fc < 0, na.rm=TRUE)) {
        # palette <- color_palette(c("green", "blue"))
    # } else {
        ## palette <- color_palette(c("darkgreen", "#0AFF34", "#B3B3B3", "#FF6347", "red"))
    # }
    # return(palette)
# }

update_n <- function(x, showCategory) {
    if (!is.numeric(showCategory)) {
        if (inherits(x, 'list')) {
            showCategory <- showCategory[showCategory %in% names(x)]
        } else {
            showCategory <- intersect(showCategory, x$Description)
        }
        return(showCategory)
    }

    ## geneSets <- geneInCategory(x) ## use core gene for gsea result
    n <- showCategory
    if (inherits(x, 'list')) {
        nn <- length(x)
    } else {
        nn <- nrow(x)
    }
    if (nn < n) {
        n <- nn
    }

    return(n)
}

extract_geneSets <- function(x, n) {
    n <- update_n(x, n)

    if (inherits(x, 'list')) {
        geneSets <- x
    } else {
        geneSets <- geneInCategory(x) ## use core gene for gsea result
        y <- as.data.frame(x)
        geneSets <- geneSets[y$ID]
        names(geneSets) <- y$Description
    }
    if (is.numeric(n)) {
        return(geneSets[1:n])
    }
    return(geneSets[n]) ## if n is a vector of Description
}

##' Internal plot function for plotting compareClusterResult
##'
##'
##' @title plotting-clusterProfile
##' @param clProf.reshape.df data frame of compareCluster result
##' @param x x variable
##' @param type one of dot and bar
##' @param by one of percentage and count
##' @param title graph title
##' @param font.size graph font size
##' @param colorBy one of pvalue or p.adjust
##' @return ggplot object
##' @importFrom ggplot2 ggplot
##' @importFrom ggplot2 aes
##' @importFrom ggplot2 aes_
##' @importFrom ggplot2 aes_string
##' @importFrom ggplot2 geom_bar
##' @importFrom ggplot2 coord_flip
##' @importFrom ggplot2 geom_point
##' @importFrom ggplot2 %+%
##' @importFrom ggplot2 theme
##' @importFrom ggplot2 xlab
##' @importFrom ggplot2 ylab
##' @importFrom ggplot2 theme_bw
##' @importFrom ggplot2 element_text
##' @importFrom ggplot2 ggtitle
##' @importFrom ggplot2 scale_color_continuous
##' @importFrom ggplot2 guide_colorbar
##' @importFrom DOSE theme_dose
##' @author Guangchuang Yu \url{https://yulab-smu.top}
plotting.clusterProfile <- function(clProf.reshape.df,
                                    x = ~Cluster,
                                    type = "dot",
                                    colorBy = "p.adjust",
                                    by = "geneRatio",
                                    title="",
                                    font.size=12) {
    Description <- Percentage <- Count <- Cluster <- GeneRatio <- p.adjust <- pvalue <- NULL # to satisfy codetools
    if (type == "bar") {
        if (by == "percentage") {
            p <- ggplot(clProf.reshape.df,
                        aes(x=Description, y = Percentage, fill=Cluster))
        } else if (by == "count") {
            p <- ggplot(clProf.reshape.df,
                        aes(x=Description, y = Count, fill=Cluster))
        } else {

        }
        p <- p +
            geom_bar() +
                coord_flip()
    }
    
    p <- p + xlab("") + ylab("") + ggtitle(title) +
        theme_dose(font.size)
    return(p)
}




##' Get the distance of the label
##'
##' @param dimension one of 1 and 2
##' @param label_location label_location
##' @noRd
get_label_diss <- function(dimension, label_location) {
    nn <- nrow(label_location)
    label_dis <- matrix(NA, nrow = nn, ncol = nn)
    colnames(label_dis) <- rownames(label_dis) <- label_location$label
    for (i in seq_len(nn - 1)) {
        for (j in (i + 1):nn) {
        label_dis[i ,j] <- label_location[i, dimension] -  label_location[j, dimension]
        }
    }
    label_diss <- reshape2::melt(label_dis)
    label_diss <- label_diss[label_diss[,1] != label_diss[,2], ]
    label_diss <- label_diss[!is.na(label_diss[,3]), ]
    label_diss[, 1] <- as.character(label_diss[, 1])
    label_diss[, 2] <- as.character(label_diss[, 2])
    return(label_diss)
}



# adjust_location <- function(label_location, x_adjust, y_adjust) {
    # label_diss_x <- get_label_diss(1, label_location)
    # label_diss_y <- get_label_diss(2, label_location)

    # label_diss_large <- which(abs(label_diss_y[, 3]) < y_adjust) %>%
        # intersect(which(label_diss_y[, 3] > 0)) %>%
        # intersect(which(abs(label_diss_x[, 3]) < x_adjust))

    # label_diss_small <- which(abs(label_diss_y[, 3]) < y_adjust) %>%
        # intersect(which(label_diss_y[, 3] < 0)) %>%
        # intersect(which(abs(label_diss_x[, 3]) < x_adjust))

    # label_location[label_diss_y[label_diss_large, 1], 2] <- label_location[label_diss_y[label_diss_large, 2], 2] + y_adjust
    # label_location[label_diss_y[label_diss_small, 1], 2] <- label_location[label_diss_y[label_diss_small, 2], 2] - y_adjust
    # return(label_location)
# }



#' default_labeller
#'
#' default labeling function that uses the
#' internal string wrapping function `yulab.utils::str_wrap`
#' @noRd
#' @importFrom yulab.utils str_wrap
default_labeller <- function(n) {
    fun <- function(str){
        str <- gsub("_", " ", str)
        yulab.utils::str_wrap(str, n)
    }
    
    structure(fun, class = "labeller")
}

# from hadley wickham in "https://r.789695.n4.nabble.com/Suppressing-output-e-g-from-cat-td859876.html"
#' Suppressing output
#'
#' @param x some code
#' @noRd
quiet <- function(x) {
  sink(tempfile())
  on.exit(sink())
  invisible(force(x))
}


#' Get segment.size value for ggrepel
#' @param default default value of ggrepel.segment.size
#' @noRd
get_ggrepel_segsize <- function(default = 0.2) {
    getOption("ggrepel.segment.size", default = default)
}

#' Get warning message of changing parameter name
#' @param parameter old parameter name
#' @param params_df data frame with three columns: "original", "listname", and "present"
#' @noRd
get_param_change_message <- function(parameter, params_df) {
    paste0("Use '", params_df[parameter, "listname"], 
           " = list(", params_df[parameter, "present"], 
           " = your_value)' instead of '", params_df[parameter, "original"],
         "'.\n The ", params_df[parameter, "original"],
          " parameter will be removed in the next version.")
} 
YuLab-SMU/enrichplot documentation built on Jan. 10, 2025, 4:44 a.m.