R/groupComparisonPTM.R

Defines functions groupComparisonPTM

Documented in groupComparisonPTM

#' Perform differential analysis on MS-based proteomics experiments targeting PTMs
#'
#' Takes summarized PTM and protein data from `dataSummarizationPTM` or 
#' `dataSummarizationPTM_TMT` functions and performs differential analysis. 
#' Leverages unmodified protein data to perform adjustment and deconvolute the 
#' effect of the PTM and unmodified protein. If protein data is unavailable, 
#' PTM data can still be passed into the function, however adjustment can not be
#' performed. All model results are returned for completeness.
#' 
#' @export
#' @importFrom data.table data.table as.data.table `:=`
#' @importFrom MSstats groupComparison MSstatsContrastMatrix
#' @importFrom MSstatsTMT groupComparisonTMT
#' @importFrom MSstatsConvert MSstatsLogsSettings MSstatsSaveSessionInfo
#' @importFrom stats p.adjust xtabs
#' @importFrom stringr str_match
#' 
#' @param data list of summarized datasets. Output of MSstatsPTM summarization 
#' function \code{\link[MSstatsPTM]{dataSummarizationPTM}}  or 
#' \code{\link[MSstatsPTM]{dataSummarizationPTM_TMT}} depending on acquisition
#' type.
#' @param data.type string indicating experimental acquisition type. "TMT" is 
#' used for TMT labeled experiments. For all other experiments (Label Free/ DDA/ 
#' DIA) use "LabelFree".
#' @param contrast.matrix comparison between conditions of interests. Default 
#' models full pairwise comparison between all conditions
#' @param moderated For TMT experiments only. TRUE will moderate t statistic; 
#' FALSE (default) uses ordinary t statistic. Default is FALSE.
#' @param adj.method For TMT experiemnts only. Adjusted method for multiple 
#' comparison. "BH" is default. "BH" is used for all other experiment types
#' @param log_base For non-TMT experiments only. The base of the logarithm used 
#' in summarization.
#' @param use_log_file logical. If TRUE, information about data processing
#' will be saved to a file.
#' @param append logical. If TRUE, information about data processing will be 
#' added to an existing log file.
#' @param verbose logical. If TRUE, information about data processing will be 
#' printed to the console.
#' @param log_file_path character. Path to a file to which information about 
#' data processing will be saved. 
#' If not provided, such a file will be created automatically.
#' If `append = TRUE`, has to be a valid path to a file.
#' @param base start of the file name.
#' @return list of modeling results. Includes PTM, PROTEIN, and ADJUSTED
#'         data.tables with their corresponding model results.
#'         
#' @examples 
#' 
#' model.lf.msstatsptm = groupComparisonPTM(summary.data, 
#'                                      data.type = "LabelFree",
#'                                      verbose = FALSE)
groupComparisonPTM = function(data, data.type,
                               contrast.matrix = "pairwise",
                               moderated = FALSE, 
                               adj.method = "BH",
                               log_base = 2,
                               use_log_file = TRUE, 
                               append = FALSE,
                               verbose = TRUE, 
                               log_file_path = NULL,
                               base = "MSstatsPTM_log_") {
  
  ## Start log  
  if (is.null(log_file_path) & use_log_file == TRUE){
    time_now = Sys.time()
    path = paste0(base, gsub("[ :\\-]", "_", time_now), 
                  ".log")
    file.create(path)
  } else {path = log_file_path}
  
  if (data.type == 'TMT'){
    pkg = "MSstatsTMT"
    option_log = "MSstatsTMTLog"
  } else {
    pkg = "MSstats"
    option_log = "MSstatsLog"
  }
  
  MSstatsLogsSettings(use_log_file, append,
                      verbose, log_file_path = path, 
                      pkg_name = pkg)
  
  getOption(option_log)("INFO", "Starting parameter and data checks..")
  
  Label = Site = NULL
  
  data.ptm = data[["PTM"]]
  data.protein = data[["PROTEIN"]]
  
  ## Check for missing variables in PTM
  ## Determine if PTM should be adjusted for protein level.
  if (!is.null(data.protein)){
    adj.protein = TRUE
  } else{
    adj.protein = FALSE
  }
  
  ## Create pairwise matrix for label free
  if (contrast.matrix[1] == "pairwise" & data.type == 'LabelFree'){
    getOption(option_log)("INFO", "Building pairwise matrix.")
    labels = unique(data.ptm$ProteinLevelData$GROUP)
    contrast.matrix = MSstatsContrastMatrix('pairwise', labels)
  }
  
  ## PTM Modeling
  message("Starting PTM modeling...")
  if (data.type == 'TMT'){
    getOption(option_log)("INFO", "Starting TMT PTM Model")
    ptm_model_full = groupComparisonTMT(data.ptm, 
                                        contrast.matrix = contrast.matrix,
                                        moderated = moderated, 
                                        adj.method = adj.method,
                                        save_fitted_models = TRUE,
                                        use_log_file = use_log_file, 
                                        append = append, verbose = verbose, 
                                        log_file_path = path)
    ptm_model = ptm_model_full$ComparisonResult
    ptm_model_site_sep = ptm_model_full$ComparisonResult
    ptm_model_details = ptm_model_full$FittedModel
  } else if (data.type == 'LabelFree') {
    getOption(option_log)("INFO", "Starting non-TMT PTM Model")
    ptm_model_full = groupComparison(contrast.matrix,
                                      data.ptm, TRUE, log_base, 
                                      use_log_file, append, verbose, 
                                      log_file_path = path)
    ptm_model = ptm_model_full$ComparisonResult
    ptm_model_site_sep = ptm_model_full$ComparisonResult
    ptm_model_details = ptm_model_full$FittedModel
  }
  
  models = list('PTM.Model'=ptm_model, 'Model.Details'=ptm_model_details)
  
  if (adj.protein) {
    
    ## Protein Modeling
    message("Starting Protein modeling...")
    if (data.type == 'TMT'){
      getOption(option_log)("INFO", "Starting TMT Protein Model")
      protein_model_full = groupComparisonTMT(data.protein, 
                                          contrast.matrix = contrast.matrix,
                                          moderated = moderated, 
                                          adj.method = adj.method,
                                          save_fitted_models = TRUE,
                                          use_log_file = use_log_file,
                                          append = append,
                                          verbose = verbose, 
                                          log_file_path = path)
      protein_model = protein_model_full$ComparisonResult
      protein_model_details = protein_model_full$FittedModel
    } else if (data.type == 'LabelFree') {
      getOption(option_log)("INFO", "Starting non-TMT Protein Model")
      protein_model_full = groupComparison(contrast.matrix, 
                                            data.protein,
                                            TRUE, log_base, use_log_file, 
                                            append, verbose, 
                                            log_file_path = path)
      protein_model = protein_model_full$ComparisonResult
      protein_model_details = protein_model_full$FittedModel
    }
    
    ptm_model = as.data.table(ptm_model)
    protein_model = as.data.table(protein_model)
    
    message("Starting adjustment...")
    getOption(option_log)("INFO", "Starting Protein Adjustment")
    ptm_model_site_sep = copy(ptm_model)
    
    ## extract global protein name
    ptm_model_site_sep = .extractProtein(ptm_model_site_sep, protein_model)
    getOption(option_log)("INFO", "Rcpp function extracted protein info")
    
    ## adjustProteinLevel function can only compare one label at a time
    comparisons = unique(ptm_model_site_sep[, Label])
    
    adjusted_model_list = list()
    for (i in seq_len(length(comparisons))) {
      getOption(option_log)("INFO", paste0("Adjusting for Comparison - ", 
                                             as.character(i)))
      temp_adjusted_model = .applyPtmAdjustment(comparisons[[i]],
                                                   ptm_model_site_sep,
                                                   protein_model)
      adjusted_model_list[[i]] = temp_adjusted_model
    }
    
    adjusted_models = rbindlist(adjusted_model_list)
    
    adjusted_models$GlobalProtein = adjusted_models$Protein
    adjusted_models$Protein = adjusted_models$Site
    adjusted_models[, Site := NULL]
    
    ## Add unadjustable ptms into final dataframe
    adjusted_models$temp_check = paste(adjusted_models$Protein, 
                                       adjusted_models$Label, sep = "_")
    ptm_model$temp_check = paste(ptm_model$Protein, 
                                 ptm_model$Label, sep = "_")
    missing_ptms = setdiff(ptm_model$temp_check, adjusted_models$temp_check)
    
    missing_rows = ptm_model[ptm_model$temp_check %in% missing_ptms]
    missing_rows$GlobalProtein = "missing"
    missing_rows$Adjusted = FALSE
    missing_rows[, c('issue', 'MissingPercentage', 
                     'ImputationPercentage', 'temp_check'):=NULL]
    
    adjusted_models$Adjusted = TRUE
    
    if (data.type == 'TMT'){
      missing_rows$Tvalue = missing_rows$log2FC / missing_rows$SE
    }
    
    ptm_model$temp_check = NULL
    adjusted_models$temp_check = NULL
    
    adjusted_models = rbindlist(list(adjusted_models, missing_rows), 
                                use.names=TRUE)
    adjusted_models = adjusted_models[!is.na(adjusted_models$Protein)]
    
    getOption(option_log)("INFO", "Adjustment complete, returning models.")
    models = list('PTM.Model'=ptm_model, 'PROTEIN.Model'=protein_model,
                  'ADJUSTED.Model'=adjusted_models, 
                  'Model.Details'=list('PTM'=ptm_model_details,
                                       'PROTEIN'=protein_model_details))
  }

  return(models)

}
Vitek-Lab/MSstatsPTM documentation built on Dec. 19, 2024, 6:02 a.m.