#' Plot results of nonlinear_quantlim() and linear_quantlim()
#'
#' This function allows to plot the curve fit that is used to calculate the LOB
#' and LOD with functions nonlinear_quantlim() and linear_quantlim(). The
#' function outputs for each calibration curve, two pdf files each containg one
#' plot. On the first, designated by _overall.pdf, the entire concentration
#' range is plotted. On the second plot, designated by _zoom.pdf, the
#' concentration range between 0 and xlim_plot (if specified in the argument
#' of the function) is plotted. When no xlim_plot value is specified, the
#' region close to LOB and LOD is automatically plotted.
#'
#' @param spikeindata Data frame that contains the experimental spiked in data.
#' This data frame should be identical to that used as input by function
#' functions nonlinear_quantlim() or linear_quantlim(). The data frame has to
#' contain the following columns : CONCENTRATION, INTENSITY (both of which are
#' measurements from the spiked in experiment) and NAME which designates the
#' name of the assay (e.g. the name of the peptide or protein)
#' @param quantlim_out Data frame that was output by functions
#' nonlinear_quantlim() or linear_quantlim(). It has to contain at least the
#' following columns: i) CONCENTRATION: Concentration values at which the value
#' of the fit is calculated ii) MEAN: The value of the curve fit iii) LOW: The
#' value of the lower bound of the 95\% prediction interval iv) UP: The value of
#' the upper bound of the 95\% prediction interval v) LOB: The value of the LOB
#' (one column with identical values) vi) LOD: The value of the LOD (one
#' column with identical values) vii) NAME: The name of the assay (identical
#' to that provided in the input) viii) METHOD which is LINEAR or NONLINEAR
#' @param alpha Probability level to estimate the LOB/LOD
#' @param xlim_plot Optional argument containing the maximum xaxis value of the
#' zoom plot. When no value is specified, a suitable value close to LOD is
#' automatically chosen.
#' @param width width of the saved file. Default is 10.
#' @param height height of the saved file. Default is 10.
#' @param address the name of folder that will store the results. Default
#' folder is the current working directory. The other assigned folder has to
#' be existed under the current working directory. An output pdf file is
#' automatically created with the default name of "QuantLim.pdf" and
#' "QuantLim_Zoom.pdf". The command address can help to specify where to store
#' the file as well as how to modify the beginning of the file name. If
#' address=FALSE, plot will be not saved as pdf file but showed in window
#'
#' @return list of two ggplot2 object
#'
#' @importFrom grDevices dev.off hcl pdf
#' @import ggplot2
#' @export
#'
#' @examples
#'
#' ## Run LOBD analysis and plot
#' quant_out = nonlinear_quantlim(spikeindata, Nbootstrap = 10)
#' plot_quantlim(spikeindata = spikeindata, quantlim_out = quant_out,
#' address = FALSE)
#'
plot_quantlim = function(spikeindata,
quantlim_out,
alpha,
xlim_plot,
width = 12,
height = 4,
address = ""){
if (is.null(quantlim_out)) {
msg <- ("Assay fit was incorrectly calculated by linear_quantlim or nonlinear_quantlim and cannot be plotted")
stop(msg)
}
#percentile of the prediction interval considered
if (missing(alpha)) {
alpha <- 5/100
}
if (alpha >= 1 | alpha <= 0) {
msg <- ("incorrect specified value for alpha, 0 < alpha < 1")
stop(msg)
}
expdata <- spikeindata
datain <- quantlim_out
#Define some colors here for the plots:
black1 <- '#000000'
orange1 <- "#E69F00"
blue1 <- "#56B4E9"
green1 <- "#009E73"
yellow1 <- "#F0E442"
blue2 <- "#0072B2"
red1 <- "#D55E00"
pink1 <- "#CC79A7"
cbbPalette <- c(black1, orange1, blue1, green1, yellow1, blue2 ,red1 , pink1)
#Rename variables for the function:
names(datain)[names(datain) == 'CONCENTRATION'] <- 'C'
names(expdata)[names(expdata) == 'CONCENTRATION'] <- 'C'
names(expdata)[names(expdata) == 'INTENSITY'] <- 'I'
names(datain)[names(datain) == 'MEAN'] <- 'mean'
names(datain)[names(datain) == 'LOW'] <- 'low'
names(datain)[names(datain) == 'UP'] <- 'up'
#Remove NA and infinite numbers from spike in data:
expdata <- expdata[!is.na(expdata$I) & !is.na(expdata$C),]
expdata <- expdata[!is.infinite(expdata$I) & !is.infinite(expdata$C),]
#Extract actual data points for plotting:
Cdata <- expdata$C
Idata <- expdata$I
tmp_blank <- expdata[expdata$C == 0,]
n_blank <- length(unique(tmp_blank$I))
noise <- mean(tmp_blank$I)
var_noise <- var(tmp_blank$I)
fac <- qt(1-alpha,n_blank - 1)*sqrt(1+1/n_blank)
#upper bound of noise prediction interval
up_noise <- noise + fac * sqrt(var_noise)
rel_size <- 2.5
rel_size_2 <- 1.8
lw <- 1
pw <- 2.5
xaxis_orig_2 <- datain$C
tmp_all <- datain
LOQ_pred <- datain$LOD[1]
LOD_pred <- datain$LOB[1]
lower_Q_pred <- datain$low
upper_Q_pred <- datain$up
mean_bilinear <- datain$mean
if (LOD_pred >= 0) {
y_LOD_pred <- up_noise
}
if (LOQ_pred >= 0) {
y_LOQ_pred <- up_noise
}
if (address != FALSE) {
allfiles <- list.files()
num <- 0
filenaming <- paste0(address, "QuantLim")
finalfile <- paste0(address, "QuantLim.pdf")
while (is.element(finalfile, allfiles)) {
num <- num + 1
finalfile <- paste0(paste(filenaming, num, sep = "-"), ".pdf")
}
pdf(finalfile, width = width, height = height)
}
if (LOQ_pred > xaxis_orig_2[3]) {
C_max <- xaxis_orig_2[min(which(abs(LOQ_pred - xaxis_orig_2) == min(
abs(LOQ_pred - xaxis_orig_2))) +1, length(xaxis_orig_2))]
}else{
C_max <- xaxis_orig_2[which(abs(mean(xaxis_orig_2) - xaxis_orig_2) == min(
abs(mean(xaxis_orig_2) - xaxis_orig_2)))]
}
low_p <- paste0(alpha * 100, "%")
high_p <- paste0(100 - alpha * 100, "%")
upp_noise <- paste(high_p, " upper bound of noise")
low_pred <- paste(low_p, 'percentile of predictions')
plots_list <- vector("list", 2)
p1 <- ggplot() + .theme_complete_bw()
p1 <- p1 + geom_point(data=data.frame(Cdata,Idata) , aes(x=Cdata,y=Idata),
size =pw*1.5)
p1 <- p1 + geom_line(data=data.frame(x=xaxis_orig_2, y=mean_bilinear,
col='mean prediction', lt = 'mean'),
aes_string(x="x", y="y", color="col"), size = lw)
p1 <- p1 + geom_ribbon(data=data.frame(x=xaxis_orig_2, ymin =lower_Q_pred,
ymax =upper_Q_pred),
aes_string(x="x", ymin="ymin", ymax="ymax"), fill = red1,
alpha = 0.3)
p1 <- p1 + geom_line(data = data.frame(x=xaxis_orig_2, ymin =lower_Q_pred,
col = low_pred, lt = 'Int'),
aes_string(x="x", y="ymin", color = "col"), size = lw)
p1 <- p1 + geom_line(data=data.frame(x=xaxis_orig_2, ymax = rep(
up_noise,length(xaxis_orig_2)), col = "95% upper bound of noise"),
aes_string(x="x", y="ymax", color = "col"),
size = lw)
p1 <- p1 + scale_alpha_continuous(guide = 'none')
p1 <- p1 + xlab('Spiked Concentration') + ylab('Estimated Concentration')
p1 <- p1 + theme(axis.text.x = element_text(size = rel(rel_size))) +
theme(axis.text.y = element_text(size = rel(rel_size)))
p1 <- p1 + theme(axis.title.x = element_text(size = rel(rel_size))) +
theme(axis.title.y = element_text(size = rel(rel_size)))
p1 <- p1 + theme(axis.title.y=element_text(vjust=0.7))
p1 <- p1 + scale_color_manual(values = c(orange1, blue1, red1),
labels = c(low_pred,
upp_noise,
"mean prediction"))
p1 <- p1 + theme(legend.title = element_blank()) +
theme(legend.position = c(0.05, 0.5),
legend.justification = c(0, 0),
legend.text=element_text(size=rel(rel_size_2)))
LOD_y <- mean_bilinear[which(abs(xaxis_orig_2 - LOD_pred) == min(
abs(xaxis_orig_2 - LOD_pred)))]
p1 <- p1 + geom_point(data=data.frame(x= LOD_pred, y= y_LOD_pred,
shape='LOD'),
aes_string(x="x", y="y", shape = "shape", guide=FALSE),
colour="purple", size=5)
LOQ_y <- lower_Q_pred[which(abs(up_noise - lower_Q_pred) == min(
abs(up_noise - lower_Q_pred)))]
p1 <- p1 + geom_point(data=data.frame(x= LOQ_pred, y= y_LOQ_pred,
shape='LOQ'),
aes_string(x="x", y="y", shape = "shape", guide=FALSE),
colour=orange1,size=5)
LOD_string <- paste('LOB=', round(LOD_pred, digits=1),sep='')
LOQ_string <- paste('LOD=',round(LOQ_pred, digits=1),sep='')
p1 <- p1 + guides(colour = guide_legend(order = 1),
linetype = guide_legend(order = 1),
shape = guide_legend(order = 2)) +
guides(shape=FALSE)
p1 <- p1 + ggtitle(paste(datain$NAME,'\n', LOD_string, ', ',
LOQ_string,sep="")) +
theme(plot.title = element_text(size = 20))
plots_list[[1]] <- p1
if (address != FALSE) {
print(p1)
dev.off()
}
# produce a second plot showing a zoomed view:
# missing argument for the x limit in the function
# pick a x limit that is close to the LOD/LOQ:
if (missing(xlim_plot)) {
if (LOQ_pred > 0) {
xlim <- LOQ_pred * 3.0
} else {
xlim <- unique(Cdata)[4]
}
} else {
xlim <- xlim_plot
}
if (address != FALSE) {
allfiles = list.files()
num = 0
filenaming = paste0(address, "QuantLim_zoom")
finalfile = paste0(address, "QuantLim_zoom.pdf")
while (is.element(finalfile, allfiles)) {
num = num + 1
finalfile = paste0(paste(filenaming, num, sep = "-"), ".pdf")
}
pdf(finalfile, width = width, height = height)
}
Idata <- subset(Idata, Cdata < xlim)
Cdata <- subset(Cdata, Cdata < xlim)
lower_Q_pred <- subset(lower_Q_pred, xaxis_orig_2 < xlim)
upper_Q_pred <- subset(upper_Q_pred, xaxis_orig_2 < xlim)
mean_bilinear <- subset(mean_bilinear, xaxis_orig_2 < xlim)
xaxis_orig_2 <- subset(xaxis_orig_2, xaxis_orig_2 < xlim)
p1 <- ggplot() + .theme_complete_bw()
p1 <- p1 + geom_point(data=data.frame(Cdata,Idata) ,
aes(x=Cdata,y=Idata),
size=pw*1.5)
p1 <- p1 + geom_line(data=data.frame(x=xaxis_orig_2,
y=mean_bilinear,
col='mean prediction',
lt = 'mean'),
aes_string(x="x", y="y", color="col"),
size = lw)
p1 <- p1 + geom_ribbon(data=data.frame(x=xaxis_orig_2,ymin =lower_Q_pred ,
ymax =upper_Q_pred),
aes_string(x="x", ymin="ymin", ymax="ymax"),
fill = red1,
alpha = 0.3)
p1 <- p1 + geom_line(data = data.frame(x=xaxis_orig_2,
ymin =lower_Q_pred,
col = 'lower 95% prediction',
lt = 'Int'),
aes_string(x="x", y="ymin", color = "col"),
size = lw)
p1 <- p1 + geom_line(data=data.frame(x=xaxis_orig_2, ymax = rep(
up_noise,length(xaxis_orig_2)),
col = "95% upper bound of noise"),
aes_string(x="x", y="ymax", color = "col"),
size = lw)
p1 <- p1 + scale_alpha_continuous(guide = 'none')
p1 <- p1 + xlab('Spiked Concentration') + ylab('Estimated Concentration')
p1 <- p1 + theme(axis.text.x = element_text(size = rel(rel_size))) +
theme(axis.text.y = element_text(size = rel(rel_size)))
p1 <- p1 + theme(axis.title.x = element_text(size = rel(rel_size))) +
theme(axis.title.y = element_text(size = rel(rel_size)))
p1 <- p1 + theme(axis.title.y=element_text(vjust=0.7))
p1 <- p1 + scale_color_manual(values = c(blue1,orange1, red1),
labels = c(upp_noise,low_pred,
"mean prediction"))
p1 <- p1 + theme(legend.title = element_blank()) +
theme(legend.position = c(0.05, 0.5),
legend.justification = c(0, 0),
legend.text=element_text(size=rel(rel_size_2)))
LOD_y <- mean_bilinear[which(abs(xaxis_orig_2 - LOD_pred) == min(
abs(xaxis_orig_2 - LOD_pred)))]
p1 <- p1 + geom_point(data=data.frame(x=LOD_pred, y=y_LOD_pred, shape='LOD'),
aes_string(x="x", y="y", shape = "shape", guide=FALSE),
colour="purple",
size=5)
LOQ_y <- lower_Q_pred[which(abs(up_noise - lower_Q_pred) == min(
abs(up_noise - lower_Q_pred)))]
p1 <- p1 + geom_point(data=data.frame(x= LOQ_pred, y= y_LOQ_pred,
shape='LOQ'),
aes_string(x="x", y="y", shape = "shape", guide=FALSE),
colour=orange1,
size=5)
LOD_string <- paste0('LOB=',round(LOD_pred, digits=1))
LOQ_string <- paste0('LOD=',round(LOQ_pred, digits=1))
p1 <- p1 + guides(colour = guide_legend(order = 1),
linetype = guide_legend(order = 1),
shape = guide_legend(order = 2)) +
guides(shape=FALSE)
p1 <- p1 + ggtitle(paste(datain$NAME,'\n', LOD_string, ', ',
LOQ_string,sep="")) +
theme(plot.title = element_text(size = 20))
plots_list[[2]] <- p1
if (address != FALSE) {
print(p1)
dev.off()
}
plots_list
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.