computePvalues <- function(W, x, method, symmetric=FALSE, acc=1.e-6)
{
if (symmetric)
lambda <- eigen(W, symmetric=TRUE, only.values=TRUE)$values
else
lambda <- Re(eigen(W, only.values=TRUE)$values)
lambda <- lambda[which(lambda >= 0)]
lambda <- lambda[which(lambda > mean(lambda) / 1.e6)]
if (length(lambda) == 0)
{
warning("no positive lambdas available => setting p-values to 1",
call.=FALSE)
return(rep(1, length(x)))
}
if (method == "davies")
{
p.values <- .Call("davies", lambda, x, acc, PACKAGE="podkat")
neg <- which(p.values <= 0 | p.values > 1 | !is.numeric(p.values) |
is.nan(p.values))
if (length(neg) > 0)
{
p.values[neg] <- .Call("liuMod", lambda, x[neg], PACKAGE="podkat")
meth <- rep("davies", length(x))
meth[neg] <- "liu.mod"
attr(p.values, "method") <- meth
}
}
else if (method == "liu")
p.values <- .Call("liu", lambda, x, PACKAGE="podkat")
else
p.values <- .Call("liuMod", lambda, x, PACKAGE="podkat")
p.values
}
computePvaluesAdj <- function(W, kernel, x, prob, Q.sim=numeric(), method)
{
if (kernel)
{
e <- eigen(W, symmetric=TRUE)
lambda <- pmax(e$values, 0)
U <- e$vectors
sel <- which(lambda > mean(lambda) / 1.e6)
lambda <- lambda[sel]
U <- U[, sel]
if (length(sel) == 0)
{
warning("no positive lambdas => resorting to bootstrap estimates",
call.=FALSE)
lambda <- numeric()
}
}
else
{
if (ncol(W) == 1)
{
lambda <- sum(W^2)
U <- W / sqrt(lambda)
}
else
{
res <- try(svd(W), silent=TRUE)
if (class(res) == "try-error")
{
warning("SVD error => resorting to bootstrap estimates",
call.=FALSE)
lambda <- numeric()
}
else
{
lambda <- res$d^2
U <- res$u
sel <- which(lambda > mean(lambda) / 1.e6)
lambda <- lambda[sel]
U <- U[, sel]
if (length(sel) == 0)
{
warning("no positive lambdas => ",
"resorting to bootstrap estimates", call.=FALSE)
lambda <- numeric()
}
}
}
}
if (length(lambda) > 0)
{
muQ <- sum(lambda)
fac <- (3 * prob^2 - 3 * prob + 1) / (prob * (1 - prob)) - 3
U2 <- U^2
C <- crossprod(U2, U2 * fac)
diag(C) <- diag(C) + 2
varQ <- drop(crossprod(lambda, C) %*% lambda)
if (length(Q.sim) > 0)
{
if (method == "unbiased")
df <- computeChiSquareParamsUnbiased(Q.sim, muQ)$df
else if (method == "population")
df <- computeChiSquareParamsPopulation(Q.sim)$df
else if (method == "sample")
df <- computeChiSquareParamsSample(Q.sim)$df
else
df <- computeChiSquareParamsSKAT(Q.sim)$df
correction <- c(exact=TRUE, resampling=TRUE)
}
else
{
lambdaS <- lambda * diag(C) / sqrt(2)
df <- sum(lambdaS^2)^2 / sum(lambdaS^4)
correction <- c(exact=TRUE, resampling=FALSE)
}
}
else if (length(Q.sim) > 0)
{
if (method == "population")
re <- computeChiSquareParamsPopulation(Q.sim)
if (method == "sample")
re <- computeChiSquareParamsSample(Q.sim)
else if (method == "SKAT")
re <- computeChiSquareParamsSKAT(Q.sim)
else
{
warning("no exact mean available => ",
"resorting to population statistics", call.=FALSE)
re <- computeChiSquareParamsPopulation(Q.sim)
}
muQ <- re$mu
varQ <- re$var
df <- re$df
correction <- c(exact=FALSE, resampling=TRUE)
}
else
{
warning("neither positive lambdas nor bootstrap estimates available ",
"=> setting p-values to 1", call.=FALSE)
return(rep(1, length(x)))
}
pValues <- pchisq((x - muQ) * sqrt(2 * df / varQ) + df, ncp=0, df=df,
lower.tail=FALSE)
attr(pValues, "correction") <- correction
pValues
}
computeChiSquareParamsUnbiased <- function(x, muQ)
{
mu4e <- mean((x - muQ)^4)
varQe <- mean((x - muQ)^2)
if (varQe > 0)
gamma <- mu4e / varQe^2 - 3
else
gamma <- 0
# kurtosis <= 0 -> use standard value 1.e6
if (!is.numeric(gamma) || !is.finite(gamma) || gamma <= 0)
df <- 1.e6
else if (gamma > 1200) # identify df by skewness
df <- 8 * varQe^3 / mean((x - muQ)^3)^2
else # standard case: identify df by kurtosis
df <- 12 / gamma
list(mu=muQ, var=varQe, df=df)
}
computeChiSquareParamsPopulation <- function(x)
{
n <- length(x)
muQ <- mean(x)
mu2e <- sum((x - muQ)^2)
mu4e <- sum((x - muQ)^4)
varQ <- mu2e / (n - 1)
if (varQ > 0)
gamma <- (((n + 1) * n * mu4e) / mu2e^2 - 3 * (n - 1)) *
(n - 1) / ((n - 2) * (n - 3))
else
gamma <- 0
# kurtosis <= 0 -> use standard value 1.e6
if (!is.numeric(gamma) || !is.finite(gamma) || gamma <= 0)
df <- 1.e6
else if (gamma > 1200) # identify df by skewness
{
mu3e <- sum((x - muQ)^3)
df <- 8 * ((n - 2) * (n - 2) * mu2e^3) /
(n * n * (n - 1) * mu3e^2)
}
else # standard case: identify df by kurtosis
df <- 12 / gamma
list(mu=muQ, var=varQ, df=df)
}
computeChiSquareParamsSample <- function(x)
{
muQ <- mean(x)
varQe <- mean((x - muQ)^2)
mu4e <- mean((x - muQ)^4)
if (varQe > 0)
gamma <- mu4e / varQe^2 - 3
else
gamma <- 0
# kurtosis <= 0 -> use standard value 1.e6
if (!is.numeric(gamma) || !is.finite(gamma) || gamma <= 0)
df <- 1.e6
else if (gamma > 1200) # identify df by skewness
df <- 8 * varQe^3 / mean((x - muQ)^3)^2
else # standard case: identify df by kurtosis
df <- 12 / gamma
list(mu=muQ, var=varQe, df=df)
}
computeChiSquareParamsSKAT <- function(x)
{
muQ <- mean(x)
mu4e <- mean((x - muQ)^4)
varQe <- var(x)
if (varQe > 0)
gamma <- mu4e / varQe^2 - 3
else
gamma <- 0
# kurtosis <= 0 -> use standard value 1.e6
if (!is.numeric(gamma) || !is.finite(gamma) || gamma <= 0)
df <- 1.e6
else if (gamma > 1200) # identify df by skewness
df <- 8 * varQe^3 / mean((x - muQ)^3)^2
else # standard case: identify df by kurtosis
df <- 12 / gamma
list(mu=muQ, var=varQe, df=df)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.