ASCA.1f<-function(X = X,Designa = Designa,Designb=NULL,Designc=NULL,Fac=c(1,2),Join=NULL,Interaction=NULL)
{
#--------------------------------------------------------------------------------------
# Dimensions of the matrices:
# X (p x n) contains expression values of n genes (in columns) and p conditions (in rows)
# Designa (p x I) contains 0's and 1's for the TIME-POINTS in the experiment
# Designres (p x H) INDIVIDUALS
# Join = TRUE if the analyses of the model b and ab is studied jointly
# Interaction = TRUE to consider interaction "ab" in the separated model
n<-ncol(X)
p<-nrow(X)
I<-ncol(Designa)
Faca=Fac[1] # number components Model a (time)
Facres=Fac[2] # number components Residues
#----------------------- Calculate Overall Mean --------------------------------------
offset<-apply(X,2,mean)
Xoff<-X-(cbind(matrix(1,nrow=p,ncol=1))%*%rbind(offset))
#----------------------- PART I: Submodel a (TIME) -----------------------------------
Model.a<-ASCAfun1(Xoff,Designa,Faca)
Xres<-Xoff-Model.a$X
# ------------------------Collecting models ------------------------------------------
models <- ls(pattern="Model")
output <- vector(mode="list")
Xres <- Xoff
for (i in 1: length(models)) {
mymodel <- get(models[i], envir=environment())
output <- c(output, list(mymodel))
Xres <- Xres - mymodel$X
rm(mymodel)
gc()
}
names(output) <- models
#------------------------- PART III: Submodel res -----------------------------------
Model.res<-ASCAfun.res(Xres,Facres)
Model.res<-list(Model.res)
names(Model.res)<-c("Model.res")
output<-c(output,Model.res)
#------------------------- Add Input data to the Output ----------------------------
Input<-list(X, Designa, Designb, Designc, Fac, Join,Interaction)
names(Input)<-c("X", "Designa", "Designb", "Designc", "Fac", "Join","Interaction")
Input<-list(Input)
names(Input)<-"Input"
output<-c(output,Input)
output
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.