#' Apply methods
#'
#' apply_methods() and its aliases apply_metrics and begin_benchmark take either
#' lists of datasets or benchmark_tbl objects and applies a list of functions.
#' The output is a benchmark_tbl where each method has been applied to each
#' dataset or preceeding result.
#'
#' @param x the list of data or benchmark tibble to apply methods to
#' @param fn_list the list of methods to be applied
#' @param name (optional) the name of the column for methods applied
#' @param suppress.messages TRUE if messages from running methods should be
#' suppressed
#'
#' @return benchmark_tbl object containing results from methods applied, the
#' first column is the name of the dataset as factors, middle columns contain
#' method names as factors and the final column is a list of results of
#' applying the methods.
#'
#' @importFrom magrittr %>%
#' @importFrom tidyselect all_of
#'
#' @seealso \code{\link{time_methods}}
#'
#' @export
#'
#' @examples
#' # list of data
#' datasets <- list(
#' set1 = rnorm(500, mean = 2, sd = 1),
#' set2 = rnorm(500, mean = 1, sd = 2)
#' )
#'
#' # list of functions
#' add_noise <- list(
#' none = identity,
#' add_bias = function(x) { x + 1 }
#' )
#'
#' res <- apply_methods(datasets, add_noise)
#'
apply_methods <- function(x, fn_list, name = NULL, suppress.messages = TRUE) {
method_names <- names(fn_list)
if (length(method_names) != length(fn_list)) {
stop("every element of fn_list must be named")
}
UseMethod("apply_methods", x)
}
#' @rdname apply_methods
#' @importFrom BiocParallel SnowParam MulticoreParam
#' @importFrom tibble tibble
#' @export
apply_methods.list <- function(
x,
fn_list,
name = NULL,
suppress.messages = TRUE
) {
data_names <- names(x)
if (length(data_names) != length(x)) {
stop("every element of x must be named")
}
method_names <- names(fn_list)
if (is.null(name)) {
name <- deparse(substitute(fn_list))
name <- gsub("methods$", "method", name)
}
multithread_param <- getOption("CellBench.bpparam")
output <- make_combinations(data_names, method_names) %>%
magrittr::set_colnames(c("data", name))
tasks <- .generate_tasks(output, x, fn_list, name)
result <- .bp_try_apply(
BPPARAM = multithread_param,
X = tasks,
suppress.messages = suppress.messages,
FUN = function(task, suppress.messages) {
suppressMsgAndPrint(
task$method(task$data),
suppress = suppress.messages
)
}
)
result <- purrr::map(
result,
name = name,
function(res, name) {
if (is.error(res) && is.null(res$error_location)) {
res$error_location <- name
res <- add_class(res, "error")
res <- add_class(res, "task_error")
}
res
}
)
output <- .make_output(output, result, name)
output <- add_class(output, "benchmark_tbl")
output
}
#' @rdname apply_methods
#' @importFrom rlang .data
#' @export
apply_methods.benchmark_tbl <- function(
x,
fn_list,
name = NULL,
suppress.messages = TRUE
) {
stopifnot(all_unique(names(fn_list)))
method_names <- names(fn_list)
if (missing("name")) {
# get name from variable name
name <- deparse(substitute(fn_list))
}
multithread_param <- getOption("CellBench.bpparam")
# sort columns from left to right, for when users input unsorted data
# otherwise order will not match tidyr::crossing
methods_columns <- names(x)[-ncol(x)]
x <- dplyr::arrange_at(x, dplyr::vars(tidyselect::all_of(methods_columns)))
tasks <- list()
for (data in x$result) {
for (fn in fn_list) {
tasks <- append(
tasks,
list(list(method = fn, data = data))
)
}
}
results <- .bp_try_apply(
BPPARAM = multithread_param,
X = tasks,
suppress.messages = suppress.messages,
FUN = function(task, suppress.messages) {
if (is.error(task$data)) {
task$data
} else {
suppressMsgAndPrint(
task$method(task$data),
suppress = suppress.messages
)
}
}
)
results <- purrr::map(
results,
name = name,
function(res, name) {
if (is.error(res) && is.null(res$error_location)) {
res$error_location <- name
res <- add_class(res, "task_error")
}
res
}
)
output <- x %>% dplyr::select(-"result")
output <- tidyr::crossing(output, factor_no_sort(method_names))
names(output)[ncol(output)] <- name
output <- output %>%
tibble::add_column(result = results)
if (all_length_one(output$result)) {
output$result <- unlist(output$result)
}
output <- add_class(output, "benchmark_tbl")
output
}
#' @rdname apply_methods
#' @export
apply_methods.tbl_df <- apply_methods.benchmark_tbl
#' @rdname apply_methods
#'
#' @export
apply_metrics <- apply_methods
#' @rdname apply_methods
#'
#' @export
begin_benchmark <- apply_methods
# wrapper for task generation
.generate_tasks <- function(output_tbl, x, fn_list, name) {
purrr::map2(
output_tbl$data,
output_tbl[[name]],
function(dname, fname) {
list(
data = x[[dname]],
method = fn_list[[fname]]
)
}
)
}
# wrapper for bptry-bplapply pattern
.bp_try_apply <- function(...) {
BiocParallel::bptry(
BiocParallel::bplapply(
...
)
)
}
# assemble output
.make_output <- function(output, result, name, timed = FALSE) {
output <- tibble::as_tibble(output)
if (timed) {
output <- tibble::add_column(output, timed_result = result)
} else {
output <- tibble::add_column(output, result = result)
if (all_length_one(output$result)) {
output$result <- unlist(output$result)
}
}
output$data <- factor_no_sort(output$data)
output[[name]] <- factor_no_sort(output[[name]])
output
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.