R/postPING.R

Defines functions postPING PostError PostDelta PostSigma PostDup processDup

Documented in postPING

# Usage: Post-process PING results Input: ping: PING result before post-process seg.boundary: a data.frame object gives
# the cutting points of segmentations (cut obtained in segmentation step, not the min/max of reads) if seg.boundary is
# give, all predictions outside of boundary should be removed.  This data frame contains 3 columns 'ID' for id of
# candidate regions and 'seg.start'/'seg.end' for start/end points of segment min.dist=100, minimum distance of two
# adjacent nucs, smaller than that will be treated as duplicated prediction on boudary postPING <- function(ping, seg,
# rho=8, makePlot=FALSE, datname='', seg.boundary=NULL, DupBound=NULL, IP=NULL,
# FragmentLength=100,mart=NULL,sigmaB2=2500,rho1=0.8,alpha1=20,alpha2=100,beta2=100000,xi=160, PE=FALSE, min.dist=100,
# lambda=-0.000064) postPING <- function(ping, seg, rho=8,
# sigmaB2=2500,rho1=0.8,alpha1=20,alpha2=100,beta2=100000,xi=150, min.dist=100, lambda=-0.000064)

#' Post process Estimation of binding site positions obtained from PING
#' 
#' Post process Estimation of binding site positions obtained from PING. Refit
#'  mixture models with stronger prior in candidate regions contain potential 
#'  problems, and then convert final result into dataframe.
#' 
#' @param ping A \code{pingList} object containing estimation of nucleosome 
#'  positions as returned by the \code{PING} function.
#' @param seg An object of class \code{segmentReadsList} containing the results
#'  for all pre-processed regions as returned by \code{segmentReads}.
#' @param paraEM A \code{list} of parameters for the EM algorithm. The default 
#'  parameters should be good enough for most usages.
#' @param minK An \code{integer}.The minimum number of binding events per region.
#'  If the value is 0, the minimum number is automatically calculated.
#' @param maxK An \code{integer}. The maximum number of binding events per region.
#'  If the value is 0, the maximum number is automatically calculated.
#' @param tol A \code{numeric}. The tolerance for the EM algorithm.
#' @param B An \code{integer}. The maximum number of iterations to be used.
#' @param mSelect A \code{character} specifying the information criteria to be
#'  used when selecting the number of binding events. Default="AIC3"
#' @param mergePeaks A \code{logical} stating whether overlapping binding events should be picked.
#' @param mapCorrect A \code{logical} stating whether mappability profiles should
#'  be incorporated in the estimation, i.e: missing reads estimated.
#' @param paraPrior A \code{list} of parameters for the prior distribution. The
#'  default parameters should be good enough for most usages.
#' @param xi An \code{integer}. The average DNA fragment size.
#' @param rho An \code{integer}. A variance parameter for the average DNA fragment size distribution.
#' @param alpha An \code{integer}. First hyperparameter of the inverse Gamma
#'  distribution for sigma^2 in the PICS model
#' @param beta An \code{integer}. Second hyperparameter of the inverse Gamma 
#' distribution for sigma^2 in the PING model
#' @param lambda An \code{integer}. The lambda control Gaussian Markov Random 
#' Field prior on the distance of adjacent nucleosomes, we do not recommend user
#'  change the default value.
#' @param dMu An \code{integer}. Our best guess for the distance between two
#'  neighboring nucleosomes.
#' @param rho2,sigmaB2,alpha2,beta2 Integer values, the parameters in the
#'  prior of mixture models to be re-fitted.
#' @param min.dist The minimum distance of two adjacent nucleosomes predicted 
#'  from different candidate regions, smaller than that will be treated as 
#'  duplicated predictions for the same nucleosomes.
#' @param score A \code{numeric}. The score threshold used when calling \code{FilterPING}.
#' @param dataType A \code{character} that can be set to use selected default 
#' parameters for the algorithm.
#' @param nCores An \code{integer}. The number of cores that should be used in 
#' parallel by the function.
#' @param makePlot A \code{logical}. Plot a summary of the output.
#' @param mart,seg.boundary,DupBound,datname Plotting parameters and options.
#' @param IP A \code{GRanges} object. The reads used in segmentation process.
#' @param FragmentLength An \code{integer}. The length of XSET profile extension
#' 
#' @note 
#' Based on our experiemt on a few real data sets, we suggestion to use following
#'  values of parameters. For sonication data we use rho1=1.2; sigmaB2=6400;
#'  rho=15; alpha1=10; alpha2=98; beta2=200000. For MNase data we use rho1=3; 
#'  sigmaB2=4900; rho=8; alpha1=20; alpha2=100; beta2=100000. The value of xi 
#'  depends on specs of sample, since that affect the length of linker-DNA. 
#'  For example, we use xi=160 for yeast and xi=200 for mouse.
#' 
#' @return A \code{data.frame} containing the estimated binding site positions
#' 
#' @seealso PING, plotSummary
#' 
#' @importFrom PICS setParaEM setParaPrior
#' @export
postPING <- function(ping, seg, rho2 = NULL, sigmaB2 = NULL, alpha2 = NULL, 
                     beta2 = NULL, min.dist = 100, paraEM = NULL,
                     paraPrior = NULL, score = 0.05, dataType = "MNase", 
                     nCores = 1, makePlot = FALSE, FragmentLength = 100, 
                     mart = NULL, seg.boundary = NULL, DupBound = NULL, 
                     IP = NULL, datname = "") {
    if (length(ping) != length(seg)) {
        stop("The length of `ping' and `seg' arguments are different. `seg' must be the same used when calling PING.")
    }
    PE <- ping@PE
    if (length(paraPrior) != 6) {
        if (isTRUE(PE)) 
            paraPrior <- setParaPrior(dataType = dataType, PExi = seg@paraSW$xi) else paraPrior <- setParaPrior(dataType = dataType)
    }
    if (length(paraEM) != 7) {
        paraEM <- setParaEM(dataType = dataType)
    }
    if (length(c(rho2, sigmaB2, alpha2, beta2)) != 4 | !is.numeric(c(rho2, sigmaB2, alpha2, beta2))) {
        if (tolower(dataType) == "mnase") {
            message("Using default refitting parameters for MNase data, for sonicated data, set the argument dataType")
            rho2 <- 8
            sigmaB2 <- 4900
            alpha2 <- 100
            beta2 <- 1e+05
        } else if (tolower(dataType) == "sonicated") {
            message("Using default refitting parameters for sonicated data")
            rho2 <- 15
            sigmaB2 <- 6400
            alpha2 <- 98
            beta2 <- 2e+05
        } else {
            stop("Invalid dataType, must be either 'MNase' or 'sonicated'")
        }
    }
    
    
    # 'Sonication': {rho1=1.2; sigmaB2=6400;rho=15;alpha1=10; alpha2=98; beta2=200000} MNase: {rho1=3; sigmaB2=4900; rho=8;
    # alpha1=20; alpha2=100; beta2=100000} produce the PING result dataframe and add rank info
    
    ps = as(ping, "data.frame")
    # ps=as.df(ping,seg)
    
    if (!is.null(seg.boundary)) {
        temp <- merge(ps, seg.boundary, all.x = T, all.y = FALSE, by = "ID")
        idx <- ((temp$mu >= temp$seg.start) & (temp$mu <= temp$seg.end))
        ps <- ps[idx, ]
    }
    
    ps = ps[order(ps$score, decreasing = T), ]
    ps$rank = 1:nrow(ps)
    
    ps1 = PostError(ps = ps, ping = ping, seg = seg, makePlot = makePlot, datname = datname, DupBound = DupBound, IP = IP, 
        FragmentLength = FragmentLength, paraEM = paraEM, paraPrior = paraPrior, nCores = nCores, rho2 = rho2)
    ps2 = PostDelta(ps = ps1, ping = ping, seg = seg, makePlot = makePlot, datname = datname, DupBound = DupBound, IP = IP, 
        FragmentLength = FragmentLength, paraEM = paraEM, paraPrior = paraPrior, nCores = nCores, rho2 = rho2, sigmaB2 = sigmaB2, 
        score = score)
    ps3 = PostSigma(ps = ps2, ping = ping, seg = seg, rho2 = rho2, makePlot = makePlot, datname = datname, DupBound = DupBound, 
        IP = IP, FragmentLength = FragmentLength, mart = mart, sigmaB2 = sigmaB2, paraEM = paraEM, paraPrior = paraPrior, 
        nCores = nCores, alpha2 = alpha2, beta2 = beta2, score = score, PE = PE)
    PS = PostDup(ps = ps3, ping = ping, seg = seg, rho2 = rho2, paraPrior = paraPrior, nCores = nCores, PE = PE, min.dist = min.dist)
    return(PS)
}



######################################################## Usage: Post-process PING results to solve the singularity problem of PING model fitting Input: ping: PING output
######################################################## before post-process seg: PING segmentation results rho: hyper-parameter in prior, which control strengh of prior on
######################################################## 'delta', larger rho means more confidence on prior guess of 'delta' ps: dataframe converted from ping output, which
######################################################## might be already post-processed makePlot: indicator of whether or not make plots of pre- and post-processed PING
######################################################## results in pdf files.  Following input parameters is only useful when we need to make plots in pdf files datname:
######################################################## name of datasets, which only used as plot file name DupBound: max # of allowed duplicated reads, which is only used
######################################################## in plot IP: the reads in IP data in 'GenomeData' format FragmentLength: the length of XSET profile extention Output
######################################################## PS: the post-processed PING results used to replace input 'ps' PostError <- function(ps, ping, seg, rho=8,
######################################################## makePlot=FALSE, datname='', DupBound=NULL, IP=NULL, FragmentLength=100,rho1,alpha1,xi, PE,lambda)
#' @importFrom PICS code
PostError <- function(ps, ping, seg, rho2 = 8, makePlot = FALSE, datname = "", DupBound = NULL, IP = NULL, FragmentLength = 100, 
    paraEM, paraPrior, nCores) {
    idxE = which(code(ping) != "")
    if (length(idxE) == 0) {
        print("No regions with pingerror")
        PS = ps
    } else {
        cat("\n The", length(idxE), "Regions with following IDs are reprocessed for singularity problem: \n")
        print(head(as.integer(idxE)))
        
        ssE = summarySeg(seg)[idxE, ]
        paraPriorPostError <- setParaPrior(xi = paraPrior$xi, rho = rho2, alpha = paraPrior$alpha, beta = paraPrior$beta, 
            lambda = paraPrior$lambda, dMu = paraPrior$dMu)
        pingE = PING(seg[idxE], paraEM = paraEM, paraPrior = paraPriorPostError, nCores = nCores)
        
        
        PS1 = as(pingE, "data.frame")
        # PS1=as.df(pingE,seg[idxE])
        
        PS1$ID = idxE[PS1$ID]
        ps$rank = NULL
        PS = rbind(ps, PS1)
        
        # modify rank info to the PING result dataframe
        PS = PS[order(PS$score, decreasing = T), ]
        PS$rank = 1:nrow(PS)
        
        
        # if (makePlot) ### make plots {
        # pdf(paste(datname,'_rho',rho2,'_DupBound',DupBound,'_pingerror.pdf',sep=''),width=11,height=8.5) for(i in
        # 1:nrow(ssE)) { chr=ssE$chr[i]; minbase=ssE$min[i]; maxbase=ssE$max[i] Axis<-makeGenomeAxis(add53 = TRUE, add35 =
        # TRUE, littleTicks = TRUE, dp = NULL) title = makeTitle(text =paste(datname, ', ', chr, ':', minbase,'-',maxbase,
        # '(',round(maxbase-minbase),'bps), XSET extend ',FragmentLength, ' bps',sep=''), color = 'darkred') XSET.IP =
        # makeXSETtrack(IP, chr, m=minbase, M=maxbase, FragmentLength=FragmentLength) Reads.IP =
        # new('RawRead',start=unlist(IP[[chr]]), end = unlist(IP[[chr]])+0.1,
        # strand=rep(names(IP[[chr]]),lapply(IP[[chr]],length)), dp = DisplayPars(size=4,lwd=3, color=c('red','blue',
        # type='l'))) gdPlot(list(title, XSET=XSET.IP,Axis,Reads=Reads.IP), minBase = minbase, maxBase =maxbase) } dev.off()
        # pingE.df.f=FilterPING(PS1)$ping.df
        # pdf(paste(datname,'_rho',rho2,'_DupBound',DupBound,'_pingEreprocess.pdf',sep=''),width=11,height=8.5) for(i in
        # 1:length(pingE)) { plot(pingE[i],seg[idxE[i]]) ff=pingE.df.f$mu[pingE.df.f$chr==seg[[idxE[i]]]@chr]
        # abline(v=ff,col=2) } dev.off() }
    }
    
    
    return(PS)
}

######################################################## Usage: Post-process PING results to solve the problem of mismatched peaks (i.e. atypical delta) Input: ping: PING
######################################################## output before post-process seg: PING segmentation results rho: hyper-parameter in prior, which control strengh of
######################################################## prior on 'delta', larger rho means more confidence on prior guess of 'delta' ps: dataframe converted from ping
######################################################## output, which might be already post-processed makePlot: indicator of whether or not make plots of pre- and
######################################################## post-processed PING results in pdf files.  Following input parameters is only useful when we need to make plots in
######################################################## pdf files datname: name of datasets, which only used as plot file name DupBound: max # of allowed duplicated reads,
######################################################## which is only used in plot IP: the reads in IP data in 'GenomeData' format FragmentLength: the length of XSET profile
######################################################## extention Output PS: the post-processed PING results used to replace input 'ps'

# PostDelta <- function(ps, ping, seg, rho=8, makePlot=FALSE, datname='', DupBound=NULL, IP=NULL, FragmentLength=100,
# sigmaB2,rho1,alpha1,xi, PE,lambda)
PostDelta <- function(ps, ping, seg, rho2 = 8, makePlot = FALSE, datname = "", DupBound = NULL, IP = NULL, FragmentLength = 100, 
    paraEM, paraPrior, nCores, sigmaB2, score) {
    temp0 = FilterPING(ps, detail = FALSE, deltaB = c(80, 250), sigmaB2 = sigmaB2, sigmaB1 = 10000, seB = Inf, score = score)
    
    # find out who is filtered out by delta
    idx = (ps$delta < temp0$myFilter$delta[1]) | (ps$delta > temp0$myFilter$delta[2])
    
    if (sum(idx) == 0) {
        print("No predictions with atypical delta")
        PS = ps
    } else {
        ff = ps[idx, ]
        ff = ff[order(ff$rank), ]
        idxFilt = c(unique(ff$ID))
        cat("\n The", length(idxFilt), "Regions with following IDs are reprocessed for atypical delta: \n")
        print(head(idxFilt))
        
        paraPriorPostDelta <- setParaPrior(xi = paraPrior$xi, rho = rho2, alpha = paraPrior$alpha, beta = paraPrior$beta, 
            lambda = paraPrior$lambda, dMu = paraPrior$dMu)
        pingFilt = PING(seg[idxFilt], paraEM = paraEM, paraPrior = paraPriorPostDelta, nCores = nCores)
        
        tempPS1 = as(pingFilt, "data.frame")
        # tempPS1=as.df(pingFilt,seg[idxFilt])
        
        tempPS1$ID = idxFilt[tempPS1$ID]
        tempPS2 = subset(ps, !(ps$ID %in% idxFilt))
        tempPS2$rank = NULL
        PS = rbind(tempPS2, tempPS1)
        PS = PS[order(PS$score, decreasing = T), ]
        PS$rank = 1:nrow(PS)
        
        # if(makePlot) { pdf(paste(datname,'_rho',rho2,'_DupBound',DupBound,'_pingFilt_delta.pdf',sep=''),width=11,height=8.5)
        # for(i in 1:length(idxFilt)) { plot(ping[idxFilt[i]],seg[idxFilt[i]])
        # ff=temp0$ping.df$mu[temp0$ping.df$chr==seg[[idxFilt[i]]]@chr] abline(v=ff,col=2) } dev.off()
        # ping.df.f=FilterPING(as(pingFilt,'data.frame'))$ping.df
        # pdf(paste(datname,'_rho',rho2,'_DupBound',DupBound,'_pingFilt_delta_Reprocess.pdf',sep=''),width=11,height=8.5) for(i
        # in 1:length(idxFilt)) { plot(pingFilt[i],seg[idxFilt[i]]) ff=ping.df.f$mu[ping.df.f$chr==seg[[idxFilt[i]]]@chr]
        # abline(v=ff,col=2) } dev.off() }
    }
    
    return(PS)
}

######################################################## Usage: Post-process PING results to solve the problem of wrongly merged peaks (i.e. too large sigma) Input: ping:
######################################################## PING output before post-process seg: PING segmentation results ps: dataframe converted from ping output, which might
######################################################## be already post-processed rho: hyper-parameter in prior, which control strengh of prior on 'delta', larger rho means
######################################################## more confidence on prior guess of 'delta' makePlot: indicator of whether or not make plots of pre- and post-processed
######################################################## PING results in pdf files.  Following input parameters is only useful when we need to make plots in pdf files
######################################################## datname: name of datasets, which only used as plot file name DupBound: max # of allowed duplicated reads, which is
######################################################## only used in plot IP: the reads in IP data in 'GenomeData' format FragmentLength: the length of XSET profile
######################################################## extention mart: saved gene anotation info obtained from 'ChIPpeakAnno' Output PS: the post-processed PING results
######################################################## used to replace input 'ps' PostSigma <- function(ps, ping, seg, rho=8, makePlot=FALSE, datname='', DupBound=NULL,
######################################################## IP=NULL, FragmentLength=100,mart,sigmaB2,rho1,alpha1,alpha2,beta2,xi,PE,lambda)
PostSigma <- function(ps, ping, seg, rho2 = 8, makePlot = FALSE, datname = "", DupBound = NULL, IP = NULL, FragmentLength = 100, 
    mart, paraEM, paraPrior, nCores, sigmaB2, alpha2, beta2, score, PE) {
    temp = FilterPING(ps, detail = FALSE, deltaB = c(80, 250), sigmaB2 = sigmaB2, sigmaB1 = 10000, seB = Inf, score = score)
    
    # find out who is filtered out by SigmaSq2
    idx4 = (ps$sigmaSqF > temp$myFilter$sigmaSq2[2]) & (ps$sigmaSqR > temp$myFilter$sigmaSq2[2])
    
    if (sum(idx4) == 0) {
        print("No predictions with atypical sigma")
        PS = ps
    } else {
        
        ff2 = ps[idx4, ]
        ff2 = ff2[order(ff2$rank), ]
        idxFiltSigma = ff2$rank
        # print('Peaks with following IDs are reprocessed for atypical sigma')
        cat("\n The", length(idxFiltSigma), "Peaks with following IDs are reprocessed for atypical sigma: \n")
        print(head(idxFiltSigma))
        
        newseg2 = vector("list", length(idxFiltSigma))
        for (i in 1:length(idxFiltSigma)) {
            newseg2[[i]] = processDup(paras = ps[idxFiltSigma[i], ], seg = seg, nsigma = 2, PE = PE)
        }
        segSigma = seg
        segSigma@List = newseg2
        
        # change hyper-parameters for rho (to avoid atypical delta) and beta (to ask for smaller 'sigma')
        paraPriorPostSigma <- setParaPrior(xi = paraPrior$xi, rho = rho2, alpha = alpha2, beta = beta2, lambda = paraPrior$lambda, 
            dMu = paraPrior$dMu)
        system.time(pingSigma <- PING(segSigma, paraEM = paraEM, paraPrior = paraPriorPostSigma, nCores = nCores))  #, PE=PE))
        
        
        tempPS1 = as(pingSigma, "data.frame")
        # tempPS1=as.df(pingSigma,segSigma)
        
        tempPS1$ID = ff2$ID[tempPS1$ID] + 0.2  # I added 0.2 to the ID name to indicate these peaks are post-processed with large sigma
        tempPS2 = ps[!idx4, ]
        tempPS2$rank = NULL
        PS = rbind(tempPS2, tempPS1)
        PS = PS[order(PS$score, decreasing = T), ]
        PS$rank = 1:nrow(PS)
        
        # if(makePlot) { tmp1=ps tmp1$center=round(tmp1$mu) tmp2=PS tmp2$center=round(tmp2$mu)
        # temp$ping.df$center=round(temp$ping.df$mu)
        # pdf(paste(datname,'_rho',rho2,'_DupBound',DupBound,'_largeSigma.pdf',sep=''),width=8.5,height=11) for(i in
        # 1:nrow(ff2)) { print(paste('plot figure',i,'of', nrow(ff2)))
        # try(plotgene(chr=ff2$chr[i],predictions=list(PING_pre=tmp1,PING_post=tmp2), unfilter=list(fAIC3=temp$ping.df),
        # unfilter.id=c(1), dif=NULL, datIP=IP, datCtl=NULL, datname=datname, FragmentLength=FragmentLength, genename=NULL,
        # genetype='ensembl_gene_id', minbase=ff2$mu[i]-1000, maxbase=ff2$mu[i]+1000,mart=mart, seg=seg) ) } dev.off() }
    }
    
    return(PS)
}


######################################################## Usage: Post-process PING results to solve the problem of Duplicated predictions on segment boundaries Input: ping:
######################################################## PING result before post-process

# PostDup <- function(ps, ping, seg, rho=8,rho1,alpha1,xi,PE,min.dist,lambda)
PostDup <- function(ps, ping, seg, rho2 = 8, paraPrior, nCores = nCores, PE, min.dist) {
    ps = ps[order(ps$chr, ps$mu), ]
    dups = which((diff(ps$ID) != 0) & (diff(ps$mu) < min.dist))  #same ID or center too close to each other
    dups = dups[ps$chr[dups] == ps$chr[dups + 1]]
    ndup = length(dups)
    
    if (ndup == 0) {
        print("No regions with Boudary problems")
        PS = ps
    } else {
        cat("\n The", length(dups), "regions with following IDs are reprocessed for Boundary problems: \n")
        print(head(dups))
        
        newseg = vector("list", ndup)
        for (i in 1:ndup) {
            newseg[[i]] = processDup(paras = ps[dups[i] + c(0, 1), ], seg = seg, PE = PE)
        }
        segDup = seg
        segDup@List = newseg
        # paraEM<-setParaEM(minK=1,maxK=15,tol=1e-4,B=100,mSelect='BIC',mergePeaks=TRUE,mapCorrect=TRUE)
        paraEM <- setParaEM(minK = 1, maxK = 2, tol = 1e-04, B = 100, mSelect = "AIC3", mergePeaks = TRUE, mapCorrect = TRUE)
        paraPriorPostDup <- setParaPrior(xi = paraPrior$xi, rho = rho2, alpha = paraPrior$alpha, beta = paraPrior$beta, 
            lambda = paraPrior$lambda, dMu = paraPrior$dMu)
        system.time(pingDup <- PING(segDup, paraEM = paraEM, paraPrior = paraPriorPostDup, nCores = nCores))  #, PE=PE))
        
        
        tempPS1 = as(pingDup, "data.frame")
        # tempPS1=as.df(pingDup,segDup)
        
        tempPS1$ID = ps[dups[tempPS1$ID], "ID"] + 0.5  # I add 0.5 to indicate these predictions are post-processed duplicated predictions on the boundary of two regions
        ps$rank = NULL
        PS = rbind(ps[-c(dups, dups + 1), ], tempPS1)
        PS = PS[order(PS$score, decreasing = T), ]
        PS$rank = 1:nrow(PS)
        
    }
    
    return(PS)
}



######################## Purpose: process duplicated nucs predicted in the overlaped segments for duplicated nucs, I extract the reads in
######################## their F/R peaks, refit the model INPUT: paras: From the data frame converted from PING result, we extract the rows of
######################## possible duplicated nucs predicted cross boundaries of segments.  seg: PING segmentation results Output: a segReads
######################## object used to refit PING model
#' @importFrom PICS segReads segReadsPE
processDup <- function(paras, seg, nsigma = 1, PE) {
    chr = as.character(paras$chr[1])
    muv = paras$mu
    deltav = paras$delta
    sigmaSqFv = paras$sigmaSqF
    sigmaSqRv = paras$sigmaSqR
    ID = paras$ID
    
    
    ## find boundaries
    sigmaF = sqrt(sigmaSqFv)
    sigmaR = sqrt(sigmaSqRv)
    startF = min(muv - deltav/2 - nsigma * sigmaF)
    endF = max(muv - deltav/2 + nsigma * sigmaF)
    startR = min(muv + deltav/2 - nsigma * sigmaR)
    endR = max(muv + deltav/2 + nsigma * sigmaR)
    
    # process seg data
    IPF = IPR = CTLF = CTLR = numeric(0)
    map = matrix(as.integer(0), 0, 2)
    
    for (i in ID) {
        temp = seg[[i]]
        IPF = c(IPF, temp@yF)
        IPR = c(IPR, temp@yR)
        CTLF = c(CTLF, temp@cF)
        CTLR = c(CTLR, temp@cR)
        map = rbind(map, temp@map)
    }
    
    IPF = subset(IPF, IPF >= startF)
    IPF = subset(IPF, IPF <= endF)
    IPR = subset(IPR, IPR >= startR)
    IPR = subset(IPR, IPR <= endR)
    CTLF = subset(CTLF, CTLF >= startF)
    CTLF = subset(CTLF, CTLF <= endF)
    CTLR = subset(CTLR, CTLR >= startR)
    CTLR = subset(CTLR, CTLR <= endR)
    
    if (PE) {
        res = segReadsPE(as.numeric(IPF), as.numeric(IPR), numeric(0), numeric(0), as.numeric(CTLF), as.numeric(CTLR), 
            numeric(0), numeric(0), map, chr)
    } else {
        res = segReads(as.numeric(IPF), as.numeric(IPR), as.numeric(CTLF), as.numeric(CTLR), map, chr)
    }
}
SRenan/PING documentation built on Dec. 31, 2019, 12:02 p.m.