#' Outputs AlignObj from an alignment of two XIC-groups
#'
#' @author Shubham Gupta, \email{shubh.gupta@mail.utoronto.ca}
#'
#' ORCID: 0000-0003-3500-8152
#'
#' License: (c) Author (2019) + GPL-3
#' Date: 2019-12-13
#'
#' @param XICs.ref List of extracted ion chromatograms from reference run.
#' @param XICs.eXp List of extracted ion chromatograms from experiment run.
#' @param globalFit Linear or loess fit object between reference and experiment run.
#' @param alignType Available alignment methods are "global", "local" and "hybrid".
#' @param adaptiveRT (numeric) Similarity matrix is not penalized within adaptive RT.
#' @param normalization (character) Must be selected from "mean", "l2".
#' @param simType (string) Must be selected from dotProduct, cosineAngle, crossCorrelation,
#' cosine2Angle, dotProductMasked, euclideanDist, covariance and correlation.
#' @param goFactor (numeric) Penalty for introducing first gap in alignment. This value is multiplied by base gap-penalty.
#' @param geFactor (numeric) Penalty for introducing subsequent gaps in alignment. This value is multiplied by base gap-penalty.
#' @param cosAngleThresh (numeric) In simType = dotProductMasked mode, angular similarity should be higher than cosAngleThresh otherwise similarity is forced to zero.
#' @param OverlapAlignment (logical) An input for alignment with free end-gaps. False: Global alignment, True: overlap alignment.
#' @param dotProdThresh (numeric) In simType = dotProductMasked mode, values in similarity matrix higher than dotProdThresh quantile are checked for angular similarity.
#' @param gapQuantile (numeric) Must be between 0 and 1. This is used to calculate base gap-penalty from similarity distribution.
#' @param kerLen (integer) In simType = crossCorrelation, length of the kernel used to sum similarity score. Must be an odd number.
#' @param hardConstrain (logical) If FALSE; indices farther from noBeef distance are filled with distance from linear fit line.
#' @param samples4gradient (numeric) This parameter modulates penalization of masked indices.
#' @param objType (char) Must be selected from light, medium and heavy.
#' @return A S4 object. Three most-important slots are:
#' \item{indexA_aligned}{(integer) aligned indices of reference run.}
#' \item{indexB_aligned}{(integer) aligned indices of experiment run.}
#' \item{score}{(numeric) cumulative score of alignment.}
#'
#' @seealso \code{\link{alignChromatogramsCpp}}
#' @examples
#' data(XIC_QFNNTDIVLLEDFQK_3_DIAlignR, package="DIAlignR")
#' data(oswFiles_DIAlignR, package="DIAlignR")
#' run1 <- "hroest_K120809_Strep0%PlasmaBiolRepl2_R04_SW_filt"
#' run2 <- "hroest_K120809_Strep10%PlasmaBiolRepl2_R04_SW_filt"
#' XICs.ref <- XIC_QFNNTDIVLLEDFQK_3_DIAlignR[[run1]][["4618"]]
#' XICs.eXp <- XIC_QFNNTDIVLLEDFQK_3_DIAlignR[[run2]][["4618"]]
#' RUNS_RT <- getRTdf(oswFiles_DIAlignR, ref = "run1", eXp = "run2", maxFdrGlobal = 0.05)
#' globalFit <- loess(RT.eXp ~ RT.ref, data = RUNS_RT, span = 0.1, control=loess.control(surface="direct"))
#' AlignObj <- getAlignObj(XICs.ref, XICs.eXp, globalFit, alignType = "hybrid", adaptiveRT = 77.82315,
#' normalization = "mean", simType = "dotProductMasked", goFactor = 0.125,
#' geFactor = 40, cosAngleThresh = 0.3, OverlapAlignment = TRUE, dotProdThresh = 0.96,
#' gapQuantile = 0.5, kerLen = 9L, hardConstrain = FALSE, samples4gradient = 100, objType = "light")
#' @export
getAlignObj <- function(XICs.ref, XICs.eXp, globalFit, alignType, adaptiveRT,
normalization, simType, goFactor, geFactor,
cosAngleThresh, OverlapAlignment,
dotProdThresh, gapQuantile, kerLen, hardConstrain,
samples4gradient, objType = "light"){
XICs.ref1 <- xicIntersect(XICs.ref) # Fixed common time in fragment-ions
XICs.eXp1 <- xicIntersect(XICs.eXp) # Fixed common time in fragment-ions
tVec.ref <- XICs.ref1[[1]][, "time"] # Extracting time component
tVec.eXp <- XICs.eXp1[[1]][, "time"] # Extracting time component
len <- length(tVec.ref)
B1p <- stats::predict(globalFit, data.frame("RT.ref" = tVec.ref[1]))[[1]]
B2p <- stats::predict(globalFit, data.frame("RT.ref" = tVec.ref[len]))[[1]]
# Set up constraints for penalizing similarity matrix
samplingTime <- (tVec.ref[len] - tVec.ref[1])/(len-1)
noBeef <- ceiling(adaptiveRT/samplingTime)
# Perform dynamic programming for chromatogram alignment
intensityList.ref <- lapply(XICs.ref1, `[`, i =, j = 2) # Extracting intensity values
intensityList.eXp <- lapply(XICs.eXp1, `[`, i =, j = 2) # Extracting intensity values
AlignObj <- alignChromatogramsCpp(intensityList.ref, intensityList.eXp,
alignType, tVec.ref, tVec.eXp,
normalization = normalization, simType = simType,
B1p = B1p, B2p = B2p, noBeef = noBeef,
goFactor = goFactor, geFactor = geFactor,
cosAngleThresh = cosAngleThresh, OverlapAlignment = OverlapAlignment,
dotProdThresh = dotProdThresh, gapQuantile = gapQuantile, kerLen = kerLen,
hardConstrain = hardConstrain, samples4gradient = samples4gradient,
objType = objType)
AlignObj
}
getAlignObj2 <- function(XICs.ref, XICs.eXp, globalFit, adaptiveRT, params,
objType = "light"){
XICs.ref1 <- xicIntersect(XICs.ref) # Fixed common time in fragment-ions
XICs.eXp1 <- xicIntersect(XICs.eXp) # Fixed common time in fragment-ions
tVec.ref <- XICs.ref1[[1]][, "time"] # Extracting time component
tVec.eXp <- XICs.eXp1[[1]][, "time"] # Extracting time component
len <- length(tVec.ref)
B1p <- getPredict(globalFit, tVec.ref[1], params[["globalAlignment"]])
B2p <- getPredict(globalFit, tVec.ref[len], params[["globalAlignment"]])
# Set up constraints for penalizing similarity matrix
samplingTime <- (tVec.ref[len] - tVec.ref[1])/(len-1)
noBeef <- ceiling(adaptiveRT/samplingTime)
# Perform dynamic programming for chromatogram alignment
intensityList.ref <- lapply(XICs.ref1, `[`, i =, j = 2) # Extracting intensity values
intensityList.eXp <- lapply(XICs.eXp1, `[`, i =, j = 2) # Extracting intensity values
AlignObj <- alignChromatogramsCpp(intensityList.ref, intensityList.eXp,
params[["alignType"]], tVec.ref, tVec.eXp,
params[["normalization"]], params[["simMeasure"]],
B1p = B1p, B2p = B2p, noBeef = noBeef,
params[["goFactor"]], params[["geFactor"]],
params[["cosAngleThresh"]], params[["OverlapAlignment"]],
params[["dotProdThresh"]], params[["gapQuantile"]], params[["kerLen"]],
params[["hardConstrain"]], params[["samples4gradient"]],
objType = objType)
AlignObj
}
#' Get mapping of reference RT on experiment run.
#'
#' This function aligns XICs of reference and experiment runs. Using alignment, it maps retention time from refernce run on experiment run.
#' @author Shubham Gupta, \email{shubh.gupta@mail.utoronto.ca}
#'
#' ORCID: 0000-0003-3500-8152
#'
#' License: (c) Author (2019) + GPL-3
#' Date: 2019-12-13
#' @param refRT Peak's retention-time in reference run.
#' @param XICs.ref List of extracted ion chromatograms from reference run.
#' @param XICs.eXp List of extracted ion chromatograms from experiment run.
#' @param globalFit Linear or loess fit object between reference and experiment run.
#' @param alignType Available alignment methods are "global", "local" and "hybrid".
#' @param adaptiveRT (numeric) Similarity matrix is not penalized within adaptive RT.
#' @param normalization (character) Must be selected from "mean", "l2".
#' @param simMeasure (string) Must be selected from dotProduct, cosineAngle, crossCorrelation,
#' cosine2Angle, dotProductMasked, euclideanDist, covariance and correlation.
#' @param goFactor (numeric) Penalty for introducing first gap in alignment. This value is multiplied by base gap-penalty.
#' @param geFactor (numeric) Penalty for introducing subsequent gaps in alignment. This value is multiplied by base gap-penalty.
#' @param cosAngleThresh (numeric) In simType = dotProductMasked mode, angular similarity should be higher than cosAngleThresh otherwise similarity is forced to zero.
#' @param OverlapAlignment (logical) An input for alignment with free end-gaps. False: Global alignment, True: overlap alignment.
#' @param dotProdThresh (numeric) In simType = dotProductMasked mode, values in similarity matrix higher than dotProdThresh quantile are checked for angular similarity.
#' @param gapQuantile (numeric) Must be between 0 and 1. This is used to calculate base gap-penalty from similarity distribution.
#' @param kerLen (integer) In simType = crossCorrelation, length of the kernel used to sum similarity score. Must be an odd number.
#' @param hardConstrain (logical) If FALSE; indices farther from noBeef distance are filled with distance from linear fit line.
#' @param samples4gradient (numeric) This parameter modulates penalization of masked indices.
#' @param objType (char) Must be selected from light, medium and heavy.
#' @return (numeric)
#' @seealso \code{\link{alignChromatogramsCpp}}
#' @keywords internal
#' @examples
#' data(XIC_QFNNTDIVLLEDFQK_3_DIAlignR, package="DIAlignR")
#' data(oswFiles_DIAlignR, package="DIAlignR")
#' run1 <- "hroest_K120809_Strep0%PlasmaBiolRepl2_R04_SW_filt"
#' run2 <- "hroest_K120809_Strep10%PlasmaBiolRepl2_R04_SW_filt"
#' XICs.ref <- XIC_QFNNTDIVLLEDFQK_3_DIAlignR[[run1]][["4618"]]
#' XICs.eXp <- XIC_QFNNTDIVLLEDFQK_3_DIAlignR[[run2]][["4618"]]
#' RUNS_RT <- getRTdf(oswFiles_DIAlignR, ref = "run1", eXp = "run2", maxFdrGlobal = 0.05)
#' globalFit <- loess(RT.eXp ~ RT.ref, data = RUNS_RT, span = 0.1, control=loess.control(surface="direct"))
#' adaptiveRT <- 77.82315 #3.5*globalFit$s
#' \dontrun{
#' getMappedRT(refRT = 5238.35, XICs.ref, XICs.eXp, globalFit, alignType = "hybrid",
#' adaptiveRT = adaptiveRT, normalization = "mean",
#' simMeasure = "dotProductMasked", goFactor = 0.125, geFactor = 40, cosAngleThresh = 0.3,
#' OverlapAlignment = TRUE, dotProdThresh = 0.96, gapQuantile = 0.5, kerLen = 9L, hardConstrain = FALSE,
#' samples4gradient = 100)
#' }
getMappedRT <- function(refRT, XICs.ref, XICs.eXp, globalFit, alignType, adaptiveRT,
normalization, simMeasure, goFactor, geFactor, cosAngleThresh,
OverlapAlignment, dotProdThresh, gapQuantile, kerLen, hardConstrain,
samples4gradient, objType = "light"){
AlignObj <- getAlignObj(XICs.ref, XICs.eXp, globalFit, alignType, adaptiveRT,
normalization, simType = simMeasure, goFactor, geFactor,
cosAngleThresh, OverlapAlignment, dotProdThresh, gapQuantile,
kerLen, hardConstrain, samples4gradient, objType)
tVec.ref <- XICs.ref[[1]][["time"]] # Extracting time component
tVec.eXp <- XICs.eXp[[1]][["time"]] # Extracting time component
eXpRT <- mappedRTfromAlignObj(refRT, tVec.ref, tVec.eXp, AlignObj)
eXpRT
}
#' Get aligned Retention times.
#'
#' This function aligns XICs of reference and experiment runs.
#' It produces aligned retention times between refernce run and experiment run.
#' @author Shubham Gupta, \email{shubh.gupta@mail.utoronto.ca}
#'
#' ORCID: 0000-0003-3500-8152
#'
#' License: (c) Author (2019) + GPL-3
#' Date: 2019-12-13
#' @param XICs.ref List of extracted ion chromatograms from reference run.
#' @param XICs.eXp List of extracted ion chromatograms from experiment run.
#' @param globalFit Linear or loess fit object between reference and experiment run.
#' @param alignType Available alignment methods are "global", "local" and "hybrid".
#' @param adaptiveRT (numeric) Similarity matrix is not penalized within adaptive RT.
#' @param normalization (character) Must be selected from "mean", "l2".
#' @param simMeasure (string) Must be selected from dotProduct, cosineAngle, crossCorrelation,
#' cosine2Angle, dotProductMasked, euclideanDist, covariance and correlation.
#' @param goFactor (numeric) Penalty for introducing first gap in alignment. This value is multiplied by base gap-penalty.
#' @param geFactor (numeric) Penalty for introducing subsequent gaps in alignment. This value is multiplied by base gap-penalty.
#' @param cosAngleThresh (numeric) In simType = dotProductMasked mode, angular similarity should be higher than cosAngleThresh otherwise similarity is forced to zero.
#' @param OverlapAlignment (logical) An input for alignment with free end-gaps. False: Global alignment, True: overlap alignment.
#' @param dotProdThresh (numeric) In simType = dotProductMasked mode, values in similarity matrix higher than dotProdThresh quantile are checked for angular similarity.
#' @param gapQuantile (numeric) Must be between 0 and 1. This is used to calculate base gap-penalty from similarity distribution.
#' @param kerLen (integer) In simType = crossCorrelation, length of the kernel used to sum similarity score. Must be an odd number.
#' @param hardConstrain (logical) If FALSE; indices farther from noBeef distance are filled with distance from linear fit line.
#' @param samples4gradient (numeric) This parameter modulates penalization of masked indices.
#' @param objType (char) Must be selected from light, medium and heavy.
#' @return (list) the first element corresponds to the aligned reference time, the second element is the aligned experiment time.
#' @seealso \code{\link{alignChromatogramsCpp}, \link{getAlignObj}}
#' @examples
#' data(XIC_QFNNTDIVLLEDFQK_3_DIAlignR, package="DIAlignR")
#' data(oswFiles_DIAlignR, package="DIAlignR")
#' run1 <- "hroest_K120809_Strep0%PlasmaBiolRepl2_R04_SW_filt"
#' run2 <- "hroest_K120809_Strep10%PlasmaBiolRepl2_R04_SW_filt"
#' XICs.ref <- XIC_QFNNTDIVLLEDFQK_3_DIAlignR[[run1]][["4618"]]
#' XICs.eXp <- XIC_QFNNTDIVLLEDFQK_3_DIAlignR[[run2]][["4618"]]
#' RUNS_RT <- getRTdf(oswFiles_DIAlignR, ref = "run1", eXp = "run2", maxFdrGlobal = 0.05)
#' globalFit <- loess(RT.eXp ~ RT.ref, data = RUNS_RT, span = 0.1, control=loess.control(surface="direct"))
#' adaptiveRT <- 77.82315 #3.5*globalFit$s
#' getAlignedTimes(XICs.ref, XICs.eXp, globalFit, alignType = "hybrid",
#' adaptiveRT = adaptiveRT, normalization = "mean",
#' simMeasure = "dotProductMasked", goFactor = 0.125, geFactor = 40, cosAngleThresh = 0.3,
#' OverlapAlignment = TRUE, dotProdThresh = 0.96, gapQuantile = 0.5, kerLen = 9L, hardConstrain = FALSE,
#' samples4gradient = 100)
#' @export
getAlignedTimes <- function(XICs.ref, XICs.eXp, globalFit, alignType, adaptiveRT,
normalization, simMeasure, goFactor, geFactor, cosAngleThresh,
OverlapAlignment, dotProdThresh, gapQuantile, kerLen, hardConstrain,
samples4gradient, objType = "light"){
alignedIndices <- getAlignedIndices(XICs.ref, XICs.eXp, globalFit, alignType, adaptiveRT,
normalization, simMeasure, goFactor, geFactor,
cosAngleThresh, OverlapAlignment, dotProdThresh, gapQuantile,
kerLen, hardConstrain, samples4gradient, objType)
keep <- !is.na(alignedIndices[,"indexAligned.ref"])
tVec.ref <- XICs.ref[[1]][,"time"] # Extracting time component
tVec.eXp <- XICs.eXp[[1]][, "time"] # Extracting time component
tAligned.ref <- mapIdxToTime(tVec.ref, alignedIndices[,"indexAligned.ref"])
tAligned.eXp <- mapIdxToTime(tVec.eXp, alignedIndices[,"indexAligned.eXp"])
tAligned.ref <- tAligned.ref[keep]
tAligned.eXp <- tAligned.eXp[keep]
list(tAligned.ref, tAligned.eXp)
}
#' Get aligned Retention times.
#'
#' This function aligns XICs of reference and experiment runs.
#' It produces aligned retention times between refernce run and experiment run.
#' @author Shubham Gupta, \email{shubh.gupta@mail.utoronto.ca}
#'
#' ORCID: 0000-0003-3500-8152
#'
#' License: (c) Author (2021) + GPL-3
#' Date: 2021-01-02
#' @inheritParams checkParams
#' @param XICs.ref List of extracted ion chromatograms from reference run.
#' @param XICs.eXp List of extracted ion chromatograms from experiment run.
#' @param globalFit Linear or loess fit object between reference and experiment run.
#' @param adaptiveRT (numeric) Similarity matrix is not penalized within adaptive RT.
#' @return (matrix) the first column corresponds to the aligned reference time, the second column is the aligned experiment time.
#' @seealso \code{\link{alignChromatogramsCpp}, \link{getAlignObj}}
#' @examples
#' data(XIC_QFNNTDIVLLEDFQK_3_DIAlignR, package="DIAlignR")
#' data(oswFiles_DIAlignR, package="DIAlignR")
#' run1 <- "hroest_K120809_Strep0%PlasmaBiolRepl2_R04_SW_filt"
#' run2 <- "hroest_K120809_Strep10%PlasmaBiolRepl2_R04_SW_filt"
#' XICs.ref <- lapply(XIC_QFNNTDIVLLEDFQK_3_DIAlignR[[run1]][["4618"]], as.matrix)
#' XICs.eXp <- lapply(XIC_QFNNTDIVLLEDFQK_3_DIAlignR[[run2]][["4618"]], as.matrix)
#' params <- paramsDIAlignR()
#' params[["globalAlignment"]] <- "linear"
#' globalFit <- getGlobalAlignment(oswFiles_DIAlignR, ref = "run2", eXp = "run0",
#' fitType = params[["globalAlignment"]], maxFdrGlobal = 0.05, spanvalue = 0.1)
#' adaptiveRT <- 77.82315 #3.5*getRSE(globalFit, params[["globalAlignment"]])
#' globalFit <- coef(globalFit)
#' getAlignedTimesFast(XICs.ref, XICs.eXp, globalFit, adaptiveRT, params)
#' @export
getAlignedTimesFast <- function(XICs.ref, XICs.eXp, globalFit, adaptiveRT, params){
B1p <- getPredict(globalFit, XICs.ref[[1]][1,1], params[["globalAlignment"]])
len <- nrow(XICs.ref[[1]])
B2p <- getPredict(globalFit, XICs.ref[[1]][len,1], params[["globalAlignment"]])
if(is.na(B1p) || is.na(B2p)){
B1p <- XICs.eXp[[1]][1,1]
B2p <- XICs.eXp[[1]][nrow(XICs.eXp[[1]]),1]
}
tAligned <- getAlignedTimesCpp(XICs.ref, XICs.eXp, params[["kernelLen"]], params[["polyOrd"]], params[["alignType"]],
adaptiveRT, params[["normalization"]], params[["simMeasure"]],
B1p = B1p, B2p = B2p, params[["goFactor"]], params[["geFactor"]], params[["cosAngleThresh"]],
params[["OverlapAlignment"]], params[["dotProdThresh"]], params[["gapQuantile"]], 9L,
params[["hardConstrain"]], params[["samples4gradient"]])
tAligned
}
#' Get aligned indices.
#'
#' This function aligns XICs of reference and experiment runs.
#' It produces aligned indices between refernce run and experiment run.
#' @author Shubham Gupta, \email{shubh.gupta@mail.utoronto.ca}
#'
#' ORCID: 0000-0003-3500-8152
#'
#' License: (c) Author (2020) + GPL-3
#' Date: 2020-06-07
#' @param XICs.ref List of extracted ion chromatograms from reference run.
#' @param XICs.eXp List of extracted ion chromatograms from experiment run.
#' @param globalFit Linear or loess fit object between reference and experiment run.
#' @param alignType Available alignment methods are "global", "local" and "hybrid".
#' @param adaptiveRT (numeric) Similarity matrix is not penalized within adaptive RT.
#' @param normalization (character) Must be selected from "mean", "l2".
#' @param simMeasure (string) Must be selected from dotProduct, cosineAngle, crossCorrelation,
#' cosine2Angle, dotProductMasked, euclideanDist, covariance and correlation.
#' @param goFactor (numeric) Penalty for introducing first gap in alignment. This value is multiplied by base gap-penalty.
#' @param geFactor (numeric) Penalty for introducing subsequent gaps in alignment. This value is multiplied by base gap-penalty.
#' @param cosAngleThresh (numeric) In simType = dotProductMasked mode, angular similarity should be higher than cosAngleThresh otherwise similarity is forced to zero.
#' @param OverlapAlignment (logical) An input for alignment with free end-gaps. False: Global alignment, True: overlap alignment.
#' @param dotProdThresh (numeric) In simType = dotProductMasked mode, values in similarity matrix higher than dotProdThresh quantile are checked for angular similarity.
#' @param gapQuantile (numeric) Must be between 0 and 1. This is used to calculate base gap-penalty from similarity distribution.
#' @param kerLen (integer) In simType = crossCorrelation, length of the kernel used to sum similarity score. Must be an odd number.
#' @param hardConstrain (logical) If FALSE; indices farther from noBeef distance are filled with distance from linear fit line.
#' @param samples4gradient (numeric) This parameter modulates penalization of masked indices.
#' @param objType (char) Must be selected from light, medium and heavy.
#' @return (data-frame) Aligned indices of reference and experiment runs. Gaps are introduced as NA.
#' @seealso \code{\link{alignChromatogramsCpp}, \link{getAlignObj}}
#' @keywords internal
#' @examples
#' data(XIC_QFNNTDIVLLEDFQK_3_DIAlignR, package="DIAlignR")
#' data(oswFiles_DIAlignR, package="DIAlignR")
#' run1 <- "hroest_K120809_Strep0%PlasmaBiolRepl2_R04_SW_filt"
#' run2 <- "hroest_K120809_Strep10%PlasmaBiolRepl2_R04_SW_filt"
#' XICs.ref <- XIC_QFNNTDIVLLEDFQK_3_DIAlignR[[run1]][["4618"]]
#' XICs.eXp <- XIC_QFNNTDIVLLEDFQK_3_DIAlignR[[run2]][["4618"]]
#' globalFit <- getGlobalAlignment(oswFiles_DIAlignR, ref = "run1", eXp = "run2",
#' fitType = "loess", maxFdrGlobal = 0.05, spanvalue = 0.1)
#' adaptiveRT <- 77.82315 #3.5*globalFit$s
#' \dontrun{
#' getAlignedIndices(XICs.ref, XICs.eXp, globalFit, alignType = "hybrid",
#' adaptiveRT = adaptiveRT, normalization = "mean",
#' simMeasure = "dotProductMasked", goFactor = 0.125, geFactor = 40, cosAngleThresh = 0.3,
#' OverlapAlignment = TRUE, dotProdThresh = 0.96, gapQuantile = 0.5, kerLen = 9L, hardConstrain = FALSE,
#' samples4gradient = 100)
#' }
getAlignedIndices <- function(XICs.ref, XICs.eXp, globalFit, alignType, adaptiveRT,
normalization, simMeasure, goFactor, geFactor, cosAngleThresh,
OverlapAlignment, dotProdThresh, gapQuantile, kerLen, hardConstrain,
samples4gradient, objType = "light"){
alignObj <- getAlignObj(XICs.ref, XICs.eXp, globalFit, alignType, adaptiveRT,
normalization, simType = simMeasure, goFactor, geFactor,
cosAngleThresh, OverlapAlignment, dotProdThresh, gapQuantile,
kerLen, hardConstrain, samples4gradient, objType)
alignedIndices <- cbind(alignObj@indexA_aligned,
alignObj@indexB_aligned,
alignObj@score)
colnames(alignedIndices) <- c("indexAligned.ref", "indexAligned.eXp", "score")
alignedIndices[, 1:2][alignedIndices[, 1:2] == 0] <- NA_integer_
alignedIndices
}
alignedTimes2 <- function(alignObj, XICs.ref, XICs.eXp){
alignedIndices <- cbind(alignObj@indexA_aligned,
alignObj@indexB_aligned,
alignObj@score)
colnames(alignedIndices) <- c("indexAligned.ref", "indexAligned.eXp", "score")
alignedIndices[, 1:2][alignedIndices[, 1:2] == 0] <- NA_integer_
keep <- !is.na(alignedIndices[,"indexAligned.ref"])
tVec.ref <- XICs.ref[[1]][["time"]] # Extracting time component
tVec.eXp <- XICs.eXp[[1]][["time"]] # Extracting time component
tAligned.ref <- mapIdxToTime(tVec.ref, alignedIndices[,"indexAligned.ref"])
tAligned.eXp <- mapIdxToTime(tVec.eXp, alignedIndices[,"indexAligned.eXp"])
tAligned.ref <- tAligned.ref[keep]
tAligned.eXp <- tAligned.eXp[keep]
data.frame(tAligned.ref, tAligned.eXp)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.