#' Outputs intensities for each analyte from aligned Targeted-MS runs
#'
#' This function expects osw and xics directories at dataPath. It first reads osw files and fetches chromatogram indices for each analyte.
#' It then align XICs of its reference XICs. Best peak, which has lowest m-score, about the aligned retention time is picked for quantification.
#' @author Shubham Gupta, \email{shubh.gupta@mail.utoronto.ca}
#'
#' ORCID: 0000-0003-3500-8152
#'
#' License: (c) Author (2019) + GPL-3
#' Date: 2019-12-14
#' @importFrom data.table data.table setkeyv
#' @inheritParams checkParams
#' @param dataPath (string) path to xics and osw directory.
#' @param outFile (string) name of the output file.
#' @param oswMerged (logical) TRUE for experiment-wide FDR and FALSE for run-specific FDR by pyprophet.
#' @param runs (a vector of string) names of xics file without extension.
#' @param refRun (string) reference for alignment. If no run is provided, m-score is used to select reference run.
#' @param applyFun (function) value must be either lapply or BiocParallel::bplapply.
#' @return An output table with following columns: precursor, run, intensity, RT, leftWidth, rightWidth,
#' peak_group_rank, m_score, alignment_rank, peptide_id, sequence, charge, group_label.
#'
#' @seealso \code{\link{getRunNames}, \link{getFeatures}, \link{setAlignmentRank}, \link{getMultipeptide}}
#' @examples
#' params <- paramsDIAlignR()
#' params[["context"]] <- "experiment-wide"
#' dataPath <- system.file("extdata", package = "DIAlignR")
#' BiocParallel::register(BiocParallel::MulticoreParam(workers = 4, progressbar = TRUE))
#' alignTargetedRuns(dataPath, outFile = "testDIAlignR", params = params, applyFun = BiocParallel::bplapply)
#' @references Gupta S, Ahadi S, Zhou W, Röst H. "DIAlignR Provides Precise Retention Time Alignment Across Distant Runs in DIA and Targeted Proteomics." Mol Cell Proteomics. 2019 Apr;18(4):806-817. doi: https://doi.org/10.1074/mcp.TIR118.001132 Epub 2019 Jan 31.
#'
#' @export
alignTargetedRuns <- function(dataPath, outFile = "DIAlignR", params = paramsDIAlignR(), oswMerged = TRUE,
runs = NULL, refRun = NULL, applyFun = lapply){
#### Check if all parameters make sense. #########
params <- checkParams(params)
#### Get filenames from .osw file and check consistency between osw and mzML files. #################
fileInfo <- getRunNames(dataPath, oswMerged, params)
fileInfo <- updateFileInfo(fileInfo, runs)
runs <- rownames(fileInfo)
message("Following runs will be aligned:")
print(fileInfo[, "runName"], sep = "\n")
#### Get Precursors from the query and respectve chromatogram indices. ######
# Get all the precursor IDs, transition IDs, Peptide IDs, Peptide Sequence Modified, Charge.
start_time <- Sys.time()
precursors <- getPrecursors(fileInfo, oswMerged, params[["runType"]], params[["context"]], params[["maxPeptideFdr"]], params[["level"]])
if(params[["fractionPercent"]] != 100L){
idx <- getPrecursorSubset(precursors, params)
precursors <- precursors[idx[1]:idx[2],]
setkeyv(precursors, c("peptide_id", "transition_group_id"))
outFile <- paste(outFile, params[["fraction"]], params[["fractionPercent"]], sep = "_")
}
outFile <- paste0(outFile,".tsv")
end_time <- Sys.time()
message("The execution time for getting precursors:")
print(end_time - start_time)
#### Get Peptide scores, pvalue and qvalues. ######
# Some peptides may not be found due to using a subset of runs. Appends NA for them.
# This translates as "Chromatogram indices for peptide ID are missing in NA"
start_time <- Sys.time()
peptideIDs <- precursors[, logical(1), keyby = peptide_id]$peptide_id
peptideScores <- getPeptideScores(fileInfo, peptideIDs, oswMerged, params[["runType"]], params[["context"]])
peptideScores <- lapply(peptideIDs, function(pep) peptideScores[.(pep)])
names(peptideScores) <- as.character(peptideIDs)
end_time <- Sys.time()
message("The execution time for fetching peptide scores:")
print(end_time - start_time)
#### Get reference run for each precursor ########
start_time <- Sys.time()
idx <- which(fileInfo$runName == refRun)
if(length(idx) == 0){
message("Calculating reference run for each peptide.")
refRuns <- getRefRun(peptideScores)
} else{
run <- rownames(fileInfo)[idx]
refRuns <- data.table("peptide_id" = peptideIDs, "run" = run, key = "peptide_id")
}
end_time <- Sys.time()
message("The execution time for calculating a reference run:")
print(end_time - start_time)
rm(peptideScores)
#### Get OpenSWATH peak-groups and their retention times. ##########
start_time <- Sys.time()
if(params[["transitionIntensity"]]){
features <- getTransitions(fileInfo, params[["maxFdrQuery"]], params[["runType"]], applyFun)
} else{
features <- getFeatures(fileInfo, params[["maxFdrQuery"]], params[["runType"]], applyFun)
}
end_time <- Sys.time()
message("The execution time for fetching features:")
print(end_time - start_time)
#### Collect pointers for each mzML file. #######
start_time <- Sys.time()
message("Collecting metadata from mzML files.")
mzPntrs <- getMZMLpointers(fileInfo)
message("Metadata is collected from mzML files.")
end_time <- Sys.time()
message("The execution time for getting pointers:")
print(end_time - start_time)
#### Get chromatogram Indices of precursors across all runs. ############
message("Collecting chromatogram indices for all precursors.")
start_time <- Sys.time()
prec2chromIndex <- getChromatogramIndices(fileInfo, precursors, mzPntrs, applyFun)
end_time <- Sys.time()
message("The execution time for getting chromatogram indices:")
print(end_time - start_time)
#### Convert features into multi-peptide #####
message("Building multipeptide.")
start_time <- Sys.time()
multipeptide <- getMultipeptide(precursors, features, applyFun)
message(length(multipeptide), " peptides are in the multipeptide.")
end_time <- Sys.time()
message("The execution time for building multipeptide:")
print(end_time - start_time)
#### Container to save Global alignments. #######
message("Calculating global alignments.")
start_time <- Sys.time()
globalFits <- getGlobalFits(refRuns, features, fileInfo, params[["globalAlignment"]],
params[["globalAlignmentFdr"]], params[["globalAlignmentSpan"]], applyFun)
RSE <- applyFun(globalFits, getRSE, params[["globalAlignment"]])
globalFits <- applyFun(globalFits, extractFit, params[["globalAlignment"]])
rm(features)
end_time <- Sys.time()
message("The execution time for calculating global alignment:")
print(end_time - start_time)
# TODO: Check dimensions of multipeptide, PeptideIDs, precursors etc makes sense.
#### Perform pairwise alignment ###########
message("Performing reference-based alignment.")
start_time <- Sys.time()
num_of_batch <- ceiling(length(multipeptide)/params[["batchSize"]])
invisible(
lapply(1:num_of_batch, perBatch, peptideIDs, multipeptide, refRuns, precursors,
prec2chromIndex, fileInfo, mzPntrs, params, globalFits, RSE, lapply)
)
#### Cleanup. #######
for(mz in mzPntrs){
if(is(mz)[1] == "SQLiteConnection") DBI::dbDisconnect(mz)
if(is(mz)[1] == "mzRpwiz") rm(mz)
}
rm(prec2chromIndex, globalFits, refRuns, RSE)
end_time <- Sys.time() # Report the execution time for hybrid alignment step.
message("The execution time for alignment:")
print(end_time - start_time)
#### Write tables to the disk #######
finalTbl <- writeTables(fileInfo, multipeptide, precursors)
if(params[["transitionIntensity"]]){
finalTbl[,intensity := sapply(intensity,function(x) paste(round(x, 3), collapse=", "))]
}
utils::write.table(finalTbl, file = outFile, sep = "\t", row.names = FALSE, quote = FALSE)
message("Retention time alignment across runs is done.")
message(paste0(outFile, " file has been written."))
#### Write alignment summary #######
alignmentStats(finalTbl, params)
}
#' AlignObj for analytes between a pair of runs
#'
#' This function expects osw and xics directories at dataPath. It first reads osw files and fetches chromatogram indices for each requested analyte.
#' It then align XICs of each analyte to its reference XICs. AlignObj is returned which contains aligned indices and cumulative score along the alignment path.
#' @author Shubham Gupta, \email{shubh.gupta@mail.utoronto.ca}
#'
#' ORCID: 0000-0003-3500-8152
#'
#' License: (c) Author (2019) + GPL-3
#' Date: 2019-12-14
#' @importFrom rlang .data
#' @inheritParams alignTargetedRuns
#' @param analytes (vector of integers) transition_group_ids for which features are to be extracted.
#' @param objType (char) Must be selected from light, medium and heavy.
#' @return A list of fileInfo and AlignObjs. Each AlignObj is an S4 object. Three most-important slots are:
#' \item{indexA_aligned}{(integer) aligned indices of reference run.}
#' \item{indexB_aligned}{(integer) aligned indices of experiment run.}
#' \item{score}{(numeric) cumulative score of alignment.}
#' @seealso \code{\link{plotAlignedAnalytes}, \link{getRunNames}, \link{getFeatures}, \link{getXICs4AlignObj}, \link{getAlignObj}}
#' @examples
#' dataPath <- system.file("extdata", package = "DIAlignR")
#' params <- paramsDIAlignR()
#' params[["context"]] <- "experiment-wide"
#' runs <- c("hroest_K120808_Strep10%PlasmaBiolRepl1_R03_SW_filt",
#' "hroest_K120809_Strep0%PlasmaBiolRepl2_R04_SW_filt",
#' "hroest_K120809_Strep10%PlasmaBiolRepl2_R04_SW_filt")
#' analytes <- c(32L, 898L, 2474L)
#' AlignObjOutput <- getAlignObjs(analytes, runs, dataPath = dataPath)
#' plotAlignedAnalytes(AlignObjOutput)
#'
#' @references Gupta S, Ahadi S, Zhou W, Röst H. "DIAlignR Provides Precise Retention Time Alignment Across Distant Runs in DIA and Targeted Proteomics." Mol Cell Proteomics. 2019 Apr;18(4):806-817. doi: https://doi.org/10.1074/mcp.TIR118.001132 Epub 2019 Jan 31.
#'
#' @export
getAlignObjs <- function(analytes, runs, dataPath = ".", refRun = NULL, oswMerged = TRUE,
params = paramsDIAlignR(), objType = "light"){
#### Check if all parameters make sense. #########
checkParams(params)
##### Get filenames from osw files and check if names are consistent between osw and mzML files. ######
filenames <- getRunNames(dataPath, oswMerged, params)
filenames <- updateFileInfo(filenames, runs)
missingRun <- setdiff(runs, filenames$runName)
if(length(missingRun) != 0){
return(stop(missingRun, " runs are not found."))
}
message("Following runs will be aligned:")
print(filenames[, "runName"], sep = "\n")
######### Collect pointers for each mzML file. #######
message("Collecting metadata from mzML files.")
mzPntrs <- getMZMLpointers(filenames)
message("Metadata is collected from mzML files.")
######### Get Precursors from the query and respectve chromatogram indices. ######
precursors <- getPrecursorByID(analytes, filenames)
#### Precursors for which features are identified. ##############
features <- getFeatures(filenames, params[["maxFdrQuery"]], params[["runType"]])
###### Report analytes that are not found ########
refAnalytes <- analytesFromFeatures(features, analyteFDR = params[["analyteFDR"]], commonAnalytes = FALSE)
analytesFound <- intersect(analytes, refAnalytes)
analytesNotFound <- setdiff(analytes, analytesFound)
if(length(analytesNotFound)>0){
message(paste(analytesNotFound, "not found with FDR cut-off."))
}
analytes <- analytesFound
precursors <- precursors[precursors[["transition_group_id"]] %in% analytes, ]
if(nrow(precursors) == 0){
stop("No precursors are found below ", params[["analyteFDR"]])
}
############# Get chromatogram Indices of precursors across all runs. ############
prec2chromIndex <- getChromatogramIndices(filenames, precursors, mzPntrs)
#### Get Peptide scores, pvalue and qvalues. ######
peptideIDs <- unique(precursors$peptide_id)
peptideScores <- getPeptideScores(filenames, peptideIDs, oswMerged, params[["runType"]], params[["context"]])
peptideScores <- lapply(peptideIDs, function(pep) dplyr::filter(peptideScores, .data$peptide_id == pep))
names(peptideScores) <- as.character(peptideIDs)
############## Get reference run for each precursor ########
idx <- which(filenames$runName == refRun)
if(length(idx) == 0){
print("Finding reference run using SCORE_PEPTIDE table")
refRun <- data.frame("transition_group_id" = precursors$transition_group_id,
"run" = NA_character_)
temp <- getRefRun(peptideScores)
refRun$run <- temp$run[match(precursors$peptide_id, temp$peptide_id)]
} else{
run <- rownames(filenames)[idx]
refRun <- data.frame("transition_group_id" = precursors$transition_group_id,
"run" = run)
}
####################### Get XICs ##########################################
# Get Chromatogram for each peptide in each run.
message("Fetching Extracted-ion chromatograms from runs")
XICs <- getXICs4AlignObj(mzPntrs, filenames, filenames[, "runName"], prec2chromIndex, analytes)
rm(mzPntrs)
####################### Perfrom alignment ##########################################
AlignObjs <- vector("list", length(analytes))
globalFits <- list()
RSE <- list()
runs <- rownames(filenames)
message("Perfroming alignment")
for(analyteIdx in seq_along(analytes)){
analyte <- as.character(analytes[analyteIdx])
ref <- refRun[["run"]][analyteIdx]
AlignObjs[[analyteIdx]] <- list()
# Get XIC_group from reference run
XICs.ref <- XICs[[filenames[ref,"runName"]]][[analyte]]
if(is.null(XICs.ref)){
warning("Chromatogram indices for ", analyte, " are missing in ", filenames[ref, "runName"])
message("Skipping ", analyte)
AlignObjs[[analyteIdx]] <- NULL
next
}
XICs.ref.s <- smoothXICs(XICs.ref, type = params[["XICfilter"]], kernelLen = params[["kernelLen"]],
polyOrd = params[["polyOrd"]])
exps <- setdiff(runs, ref)
# Align experiment run to reference run
for(eXp in exps){
pair <- paste(ref, eXp, sep = "_")
AlignObjs[[analyteIdx]][[pair]] <- list()
# Get XIC_group from experiment run
XICs.eXp <- XICs[[filenames[eXp,"runName"]]][[analyte]]
if(is.null(XICs.eXp)){
warning("Chromatogram indices for ", analyte, " are missing in ", filenames[eXp, "runName"])
message("Skipping ", analyte)
AlignObjs[[analyteIdx]][[pair]] <- NULL
next
}
XICs.eXp.s <- smoothXICs(XICs.eXp, type = params[["XICfilter"]], kernelLen = params[["kernelLen"]],
polyOrd = params[["polyOrd"]])
# Get the loess fit for hybrid alignment
if(any(pair %in% names(globalFits))){
globalFit <- globalFits[[pair]]
} else{
globalFit <- getGlobalAlignment(features, ref, eXp, params[["globalAlignment"]],
params[["globalAlignmentFdr"]], params[["globalAlignmentSpan"]])
RSE[[pair]] <- getRSE(globalFit, params[["globalAlignment"]])
globalFits[[pair]] <- extractFit(globalFit, params[["globalAlignment"]])
}
adaptiveRT <- params[["RSEdistFactor"]]*RSE[[pair]]
# Fetch alignment object between XICs.ref and XICs.eXp
AlignObj <- getAlignObj2(XICs.ref.s, XICs.eXp.s, globalFits[[pair]], adaptiveRT, params, objType)
# Attach AlignObj for the analyte.
AlignObjs[[analyteIdx]][[pair]][["AlignObj"]] <- AlignObj
# Attach intensities of reference XICs.
AlignObjs[[analyteIdx]][[pair]][["ref"]] <- XICs.ref
# Attach intensities of experiment XICs.
AlignObjs[[analyteIdx]][[pair]][["eXp"]] <- XICs.eXp
# Attach peak boundaries to the object.
AlignObjs[[analyteIdx]][[pair]][["peak"]] <- features[[ref]] %>%
dplyr::filter(.data$transition_group_id == as.integer(analyte) & .data$peak_group_rank == 1) %>%
dplyr::select(.data$leftWidth, .data$RT, .data$rightWidth) %>%
as.vector()
}
}
names(AlignObjs) <- as.character(analytes)
####################### Return AlignedObjs ##########################################
message("Alignment done. Returning AlignObjs")
list(filenames, AlignObjs)
}
#' Aligns an analyte across runs
#'
#' For the ith analyte in multipeptide, this function aligns all runs to the reference run. The result is
#' a dataframe that contains aligned features corresponding to the analyte across all runs.
#' @author Shubham Gupta, \email{shubh.gupta@mail.utoronto.ca}
#'
#' ORCID: 0000-0003-3500-8152
#'
#' License: (c) Author (2020) + GPL-3
#' Date: 2020-07-26
#' @keywords internal
#' @importFrom data.table set
#' @inheritParams checkParams
#' @param rownum (integer) represnts the index of the multipepetide to be aligned.
#' @param peptideIDs (integer) vector of peptideIDs.
#' @param multipeptide (list) contains multiple data-frames that are collection of features
#' associated with analytes. This is an output of \code{\link{getMultipeptide}}.
#' @param refRuns (data-frame) output of \code{\link{getRefRun}}. Must have two columsn : transition_group_id and run.
#' @param precursors (data-frame) atleast two columns transition_group_id and transition_ids are required.
#' @param prec2chromIndex (list) a list of dataframes having following columns: \cr
#' transition_group_id: it is PRECURSOR.ID from osw file. \cr
#' chromatogramIndex: index of chromatogram in mzML file.
#' @param fileInfo (data-frame) output of \code{\link{getRunNames}}.
#' @param mzPntrs (list) a list of mzRpwiz.
#' @param globalFits (list) each element is either of class lm or loess. This is an output of \code{\link{getGlobalFits}}.
#' @param RSE (list) Each element represents Residual Standard Error of corresponding fit in globalFits.
#' @return invisible NULL
#' @seealso \code{\link{alignTargetedRuns}, \link{alignToRef}, \link{getAlignedTimes}, \link{getMultipeptide}}
#' @examples
#' dataPath <- system.file("extdata", package = "DIAlignR")
perBatch <- function(iBatch, peptideIDs, multipeptide, refRuns, precursors, prec2chromIndex,
fileInfo, mzPntrs, params, globalFits, RSE, applyFun = lapply){
if(params[["chromFile"]] =="mzML") fetchXIC = extractXIC_group
if(params[["chromFile"]] =="sqMass") fetchXIC = extractXIC_group2
message("Processing Batch ", iBatch)
batchSize <- params[["batchSize"]]
strt <- ((iBatch-1)*batchSize+1)
stp <- min((iBatch*batchSize), length(peptideIDs))
##### Get XICs for the batch across all runs #####
XICs <- lapply(strt:stp, function(rownum){
##### Get transition_group_id for that peptideID #####
idx <- precursors[.(peptideIDs[rownum]), which = TRUE]
analytes <- precursors[idx, "transition_group_id"][[1]]
xics <- lapply(names(mzPntrs), function(run){
chromIndices <- .subset2(prec2chromIndex[[run]], "chromatogramIndex")[idx]
if(any(is.na(unlist(chromIndices))) | is.null(unlist(chromIndices))) return(NULL)
temp <- lapply(chromIndices, function(i1) fetchXIC(mzPntrs[[run]], i1))
names(temp) <- as.character(analytes)
temp
})
names(xics) <- names(mzPntrs)
xics
})
##### Get aligned multipeptide for the batch #####
invisible(applyFun(strt:stp, function(rownum){
peptide <- peptideIDs[rownum]
DT <- multipeptide[[rownum]]
ref <- refRuns[rownum, "run"][[1]]
idx <- (rownum - (iBatch-1)*batchSize)
XICs.ref <- XICs[[idx]][[ref]]
if(is.null(XICs.ref)){
message("Chromatogram indices for peptide ", peptide, " are missing in ", fileInfo[ref, "runName"])
message("Skipping peptide ", peptide, " across all runs.")
return(invisible(NULL))
}
##### Set alignment rank for all precrusors of the peptide in the reference run #####
analytes <- as.integer(names(XICs.ref))
refIdx <- which(DT[["run"]] == ref & DT[["peak_group_rank"]] == 1)
refIdx <- refIdx[which.min(DT$m_score[refIdx])]
if(length(refIdx)==0) {
message("Features for peptide ", peptide, " is missing in ", fileInfo[ref, "runName"])
message("Skipping peptide ", peptide, " across all runs.")
return(invisible(NULL))
}
set(DT, i = refIdx, 10L, 1L)
setOtherPrecursors(DT, refIdx, XICs.ref, analytes, params)
# Update multipeptide reference intensity if recal is true
if(params[["recalIntensity"]]) reIntensity(DT, ref, XICs.ref, params)
##### Align all runs to reference run and set their alignment rank #####
exps <- setdiff(rownames(fileInfo), ref)
invisible(
lapply(exps, alignToRef, ref, refIdx, fileInfo, XICs[[idx]], XICs.ref, params,
DT, globalFits, RSE)
)
##### Return the dataframe with alignment rank set to TRUE #####
updateOnalignTargetedRuns(rownum)
})
)
invisible(NULL)
}
#' Aligns an analyte from an experiment to the reference run
#'
#' df contains unaligned features for an analyte across multiple runs. This function aligns eXp run to
#' ref run and updates corresponding features.
#'
#' @author Shubham Gupta, \email{shubh.gupta@mail.utoronto.ca}
#'
#' ORCID: 0000-0003-3500-8152
#'
#' License: (c) Author (2020) + GPL-3
#' Date: 2020-07-26
#' @keywords internal
#' @inheritParams perBatch
#' @inherit perBatch return
#' @param eXp (string) name of the run to be aligned to reference run. Must be in the rownames of fileInfo.
#' @param ref (string) name of the reference run. Must be in the rownames of fileInfo.
#' @param analyte_chr (string) Precursor ID of the requested analyte.
#' @param XICs.ref.s (list of dataframes) Smoothed fragment-ion chromatograms of the analyte_chr from the reference run.
#' @param df (dataframe) a collection of features related to analyte_chr.
#' @seealso \code{\link{alignTargetedRuns}, \link{perBatch}, \link{setAlignmentRank}, \link{getMultipeptide}}
#' @examples
#' dataPath <- system.file("extdata", package = "DIAlignR")
alignToRef <- function(eXp, ref, refIdx, fileInfo, XICs, XICs.ref, params,
df, globalFits, RSE){
# Get XIC_group from experiment run.
XICs.eXp <- XICs[[eXp]]
analytes <- as.integer(names(XICs.ref))
eXpIdx <- which(df[["run"]] == eXp)
##### Check if any feature is below unaligned FDR. If present alignment_rank = 1. #####
if(any(.subset2(df, "m_score")[eXpIdx] <= params[["unalignedFDR"]], na.rm = TRUE)){
tempi <- eXpIdx[which.min(df$m_score[eXpIdx])]
set(df, tempi, 10L, 1L)
if(is.null(XICs.eXp)) return(invisible(NULL))
setOtherPrecursors(df, tempi, XICs.eXp, analytes, params)
if(params[["recalIntensity"]]) reIntensity2(df, eXp, XICs.eXp, params)
return(invisible(NULL))
}
# No high quality feature, hence, alignment is needed.
### if XICs are missing, go to next run. ####
if(is.null(XICs.eXp)){
message("Chromatogram indices for precursor ", analytes, " are missing in ", fileInfo[eXp, "runName"])
message("Skipping precursor ", analytes, " in ", fileInfo[eXp, "runName"], ".")
return(invisible(NULL))
}
# Select 1) all precursors OR 2) high quality precursor
if(FALSE){
# Turned off as precursor XICs have different time ranges.
XICs.ref.pep <- unlist(XICs.ref, recursive = FALSE, use.names = FALSE)
XICs.eXp.pep <- unlist(XICs.eXp, recursive = FALSE, use.names = FALSE)
} else {
analyte_chr <- as.character(.subset2(df, 1L)[[refIdx]])
XICs.ref.pep <- XICs.ref[[analyte_chr]]
XICs.eXp.pep <- XICs.eXp[[analyte_chr]]
}
##### Get the aligned Indices #####
pair <- paste(ref, eXp, sep = "_")
globalFit <- globalFits[[pair]]
adaptiveRT <- params[["RSEdistFactor"]]*RSE[[pair]]
if(any(sapply(seq_along(XICs.eXp.pep), function(i) any(is.na(XICs.eXp.pep[[i]]))))){
message("Missing values in the chromatogram of ", paste0(analytes, sep = " "), "in run ",
fileInfo[eXp, "runName"])
return(invisible(NULL)) # Missing values in chromatogram
}
tAligned <- tryCatch(expr = getAlignedTimesFast(XICs.ref.pep, XICs.eXp.pep, globalFit, adaptiveRT,
params),
error = function(e){
message("\nError in the alignment of ", paste0(analytes, sep = " "), "in runs ",
fileInfo[ref, "runName"], " and ", fileInfo[eXp, "runName"])
warning(e)
return(invisible(NULL))
})
tryCatch(expr = setAlignmentRank(df, refIdx, eXp, tAligned, XICs.eXp, params, adaptiveRT),
error = function(e){
message("\nError in setting alignment rank of ", paste0(analytes, sep = " "), "in runs ",
fileInfo[eXp, "runName"], " and ", fileInfo[eXp, "runName"])
warning(e)
return(invisible(NULL))
})
tempi <- eXpIdx[which(df$alignment_rank[eXpIdx] == 1L)]
setOtherPrecursors(df, tempi, XICs.eXp, analytes, params)
if(params[["recalIntensity"]]) reIntensity(df, eXp, XICs.eXp, params)
invisible(NULL)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.