#' @templateVar old gating
#' @templateVar new gt_gating
#' @template template-depr_pkg
NULL
#' @importFrom flowWorkspace gh_pop_is_negated
#' @export
gt_gating <- function(x, y, ...){
UseMethod("gt_gating")
}
#' @export
gating <- function(x, y, ...){
.Deprecated("gt_gating")
gt_gating(x,y,...)
}
#' Applies a gatingTemplate to a GatingSet.
#'
#' It loads the gating methods by topological order and applies them to \code{GatingSet}.
#'
#' @name gt_gating
#' @usage gt_gating(x, y, ...)
#' @aliases
#' gating
#' gating,gatingTemplate,GatingSet-method
#' gt_gating,gatingTemplate,GatingSet-method
#' @param x a \code{gatingTemplate} object
#' @param y a \code{GatingSet} object
#' @param ...
#' \itemize{
#' \item{start}{ a \code{character} that specifies the population (correspoding to 'alias' column in csv template) where the gating process will start from. It is useful to quickly skip some gates and go directly to the target population in the testing run. Default is "root".}
#' \item{stop.at}{ a \code{character} that specifies the population (correspoding to 'alias' column in csv template) where the gating prcoess will stop at. Default is NULL, indicating the end of gating tree.}
#' \item{keep.helperGates}{a \code{logical} flag indicating whether to keep the intermediate helper gates that are automatically generated by openCyto. Default is TRUE.}
#' \item{mc.cores}{ passed to \code{multicore} package for parallel computing}
#' \item{parallel_type}{ \code{character} specifying the parallel type. The valid options are "none", "multicore", "cluster".}
#' \item{cl}{ \code{cluster} object passed to \code{parallel} package (when \code{parallel_type} is "cluster")}
#' }
#'
#'
#' @return
#' Nothing. As the side effect, gates generated by gating methods are saved in \code{GatingSet}.
#' @examples
#' \dontrun{
#' gt <- gatingTemplate(file.path(path, "data/ICStemplate.csv"), "ICS")
#' gs <- GatingSet(fs) #fs is a flowSet/ncdfFlowSet
#' gt_gating(gt, gs)
#' gt_gating(gt, gs, stop.at = "v") #proceed the gating until population 'v'
#' gt_gating(gt, gs, start = "v") # start from 'v'
#' gt_gating(gt, gs, parallel_type = "multicore", mc.cores = 8) #parallel gating using multicore
#' #parallel gating by using cluster
#' cl1 <- makeCluster (8, type = "MPI")
#' gt_gating(gt, gs, parallel_type = "cluster", cl = cl1)
#' stopCluster ( cl1 )
#' }
#' @export
gt_gating.gatingTemplate <- function(x, y, ...) {
.gating_gatingTemplate(x, y, ...)
}
# gt_gating.gatingTemplate <- function(x, y, env_fct = NULL, ...) {
# .gating_gatingTemplate(x,y,env_fct,...)
# }
#' internal function (gating_gatingTemplate)
#'
#' @param stop.at a \code{character} that specifies the population (correspoding to 'alias' column in csv template) where the gating prcoess will stop at.
#' @param start a \code{character} that specifies the population (correspoding to 'alias' column in csv template) where the gating prcoess will start from. It is useful to quickly skip some gates and go directly to the target population in the testing run.
#' @param env_fct a \code{environment} that contains \code{fcTree} object named as 'fct'. If NULL (by default), no \code{fcTree} will be constructed. It is currently reserved for the internal debugging.
#' @param ... other arguments passed to the gatingMethod-specific \code{gating} methods.
#' @importFrom RBGL tsort
#' @keywords internal
#' @noRd
.gating_gatingTemplate <- function(x, y, env_fct = NULL, start = "root", stop.at = NULL, keep.helperGates = TRUE, ...) {
gt <- x
if (!is.null(env_fct)) {
# use the fcTree if already exists
if (exists("fct", env_fct)) {
fct <- get("fct", env_fct)
} else {
# create one from gt if not
fct <- fcTree(gt)
assign("fct", fct, env_fct)
}
}
nodePaths <- names(sapply(gt_get_nodes(gt),alias))
#validity check for stop.at argument
if(!is.null(stop.at)){
#escape meta character
stop.pat <- gsub("\\+", "\\\\+", stop.at)
stop.pat <- paste0(stop.pat, "$")
if(substr(stop.at, 1,1) != "/")
stop.pat <- paste0("/", stop.pat) #prepend path delimiter to avoid partial node name matching
idx <- grep(stop.pat, nodePaths)
if(length(idx) == 0)
stop("Can't find stop point: ", stop.at)
else if(length(idx) > 1)
stop("ambiguous stop point: ", stop.at)
}
# gate each node
gt_nodes <- tsort(gt)[-1]#by the topological order
#try to skip some nodes to save time
if(start != "root"){
#escape meta character
start.pat <- gsub("\\+", "\\\\+", start)
start.pat <- paste0(start.pat, "$") #treat it as terminal node
if(substr(start, 1,1) != "/")
start.pat <- paste0("/", start.pat) #prepend path delimiter to avoid partial node name matching
matchInd <- grep(start.pat, gt_nodes)
if(length(matchInd) == 0)
stop("Can't find start point: ", start)
else if(length(matchInd) > 1)
stop("ambiguous start point: ", start)
gt_nodes <- gt_nodes[matchInd:length(gt_nodes)]
}
for (node in gt_nodes) {
# get parent node to gate
gt_node_pop <- gt_get_nodes(gt, node)
parent <- gt_get_parent(gt, node)
if(!is.null(stop.at)){
nodeName <- alias(gt_node_pop)
nodePath <- file.path(parent, nodeName)
matchInd <- grep(stop.pat, nodePath)
if(length(matchInd) == 1)
{
message("stop at: ",stop.at)
break
}
}
# extract gate method from one edge(since multiple edge to the same node is
# redudant)
this_gate <- gt_get_gate(gt, parent, node)
#get preprocessing method
this_ppm <- ppMethod(gt, parent, node)
parentInd <- match(parent, gs_get_pop_paths(y[[1]], showHidden = TRUE))
if (is.na(parentInd))
stop("parent node '", parent, "' not gated yet!")
#preprocessing
pp_res <- NULL
# browser()
if(class(this_ppm) == "ppMethod")
pp_res <- preprocessing(x = this_ppm, y, parent = parent, gtPop = gt_node_pop, gm = this_gate, ...)
# browser()
# pass the pops and gate to gating routine
filterObj <- gt_gating(x = this_gate, y, parent = parent, gtPop = gt_node_pop, pp_res = pp_res, ...)
if(!keep.helperGates)
{
gt_delete_helpergates(x, y)
}
# update fct
if (!is.null(env_fct) && !is.null(filterObj)) {
nodeData(env_fct$fct, node, "fList")[[1]] <- filterObj
}
}
message("finished.")
}
#' apply a \link[openCyto:gtMethod-class]{gtMethod} to the \code{GatingSet}
#'
#' The actual workhorse of most gating methods
#'
#' @param x \code{gtMethod}
#' @param y \code{GatingSet}
#' @param ... other arguments
#' @aliases
#' gating,gtMethod,GatingSet-method
#' gating,gtMethod,GatingSetList-method
#' @keywords internal
#' @noRd
gt_gating.gtMethod <- function(x, y, ...) {
.gating_gtMethod(x,y,...)
}
#' evalRd tag is currently not working because the output of eval string isn't positioned properly in Rd file
#' @noRd
roxygen_parameter <- function() {
paste("
gtPop a \\code{gtPopulation} object that contains the information of the cell population that is going to be generated by this gating method.
parent\\code{character} specifying the parent node within\\code{GatingSet} to which the new popoulation is to be attached.
pp_res\\code{list} the preprocessing results to be used by the gating method. The names of the list has to be matched to the sample names of the data.
mc.cores passed to\\code{multicore} package for parallel computing
parallel_type\\code{character} specifying the parallel type. The valid options are 'none', 'multicore', 'cluster'.
cl \\code{cluster} object passed to \\code{parallel} package")
}
#' internal function (gating_gtMethod)
#'
#' It is a generic gating function that does:
#' 1. parse the gating parameters
#' 2. group the data when applicable
#' 3. apply parallelism when applicable
#' 4. pass the flow data(maybe grouped) and preprocessing results to the adaptor function ".gating_adaptor"
#' 5. collect the gates and add to GatingSet object
#'
#'
#' @param x \code{gtMethod}
#' @param y \code{GatingSet}
#' @evalRd roxygen_parameter()
#' @import flowWorkspace
#' @importFrom flowCore getChannelMarker
#' @noRd
.gating_gtMethod <- function(x, y, gtPop, parent, pp_res
, mc.cores = getOption("mc.cores", 2L), parallel_type = c("none", "multicore", "cluster"), cl = NULL
, ...) {
requireNamespace("parallel")
gFunc_args <- parameters(x)
# HOTFIX: This resolve an error when args is a named list with name NA and object NA.
# The resulting error occurs down below and is:
# Error in thisCall[[arg]] <- args[[arg]] : subscript out of bounds
if (!is.null(names(gFunc_args))) {
gFunc_args <- gFunc_args[!is.na(names(gFunc_args))]
}
## Optionally omit arguments that should not be used in this context
if(x@name == "gate_tail"){
to_omit <- na.omit(match("positive", names(gFunc_args)))
if(length(to_omit) > 0)
gFunc_args <- gFunc_args[-to_omit]
}
##
gating_method_name =names(x)
gm <- paste0(".", gating_method_name)
dims <- dims(x)
is_1d_gate <- length(dims) == 1
popAlias <- alias(gtPop)
popName <- names(gtPop)
popId <- gtPop@id
gs_nodes <- basename(gs_pop_get_children(y[[1]], parent))
if (length(gs_nodes) == 0)
isGated <- FALSE
else
isGated <- any(popAlias %in% gs_nodes)
if(!isGated)
{
message("Gating for '", popAlias, "'")
parent_data <- gs_pop_get_data(y, parent)
parallel_type <- match.arg(parallel_type)
## get the accurate channel name by matching to the fr
frm <- parent_data[[1, use.exprs = FALSE]]
channels <- unname(sapply(dims, function(channel)as.character(getChannelMarker(frm, channel)$name)))
if(length(channels) > 0)
parent_data <- parent_data[, channels] #it is more efficient to only pass the channels of interest
# Splits the flow set into a list.
# By default, each element in the list is a flowSet containing one flow frame,
# corresponding to the individual sample names.
# If 'split' is given, we split using the unique combinations within pData.
# In this case 'split' is specified with column names of the pData.
# For example, "PTID:VISITNO"
# when split is numeric, do the grouping by every N samples
groupBy <- groupBy(x)
isCollapse <- isCollapse(x)
if (groupBy != "" && isCollapse) {
#when x@collapse == FALSE,then ignore groupBy argument since grouping is only used for collapsed gating
split_by <- as.character(groupBy)
split_by_num <- as.numeric(split_by)
#split by every N samples
if(!is.na(split_by_num)){
nSamples <- length(parent_data)
if(nSamples==1){
split_by <- 1
}else{
split_by <- sample(rep(1:nSamples, each = split_by_num, length.out= nSamples))
}
}else{
#split by study variables
split_by <- strsplit(split_by, ":")[[1]]
split_by <- apply(pData(parent_data)[, split_by, drop = FALSE], 1, paste, collapse = ":")
split_by <- as.character(split_by)
}
} else {
split_by <- sampleNames(parent_data)
}
fslist <- split(parent_data, split_by)
if(is.null(pp_res))
pp_res <- sapply(names(fslist),function(i)pp_res)
else
pp_res <- pp_res[names(fslist)] #reorder pp_res to make sure it is consistent with fslist
# construct method call
thisCall <- substitute(f1(fslist,pp_res))
thisCall[["FUN"]] <- as.symbol(".gating_adaptor")
# args to be passed to gating_adaptor
args <- list()
args[["gFunc"]] <- gm #set gating method
args[["popAlias"]] <- popAlias
args[["channels"]] <- channels
negated <- popName=="-"
args[["gFunc_args"]] <- gFunc_args
thisCall[["MoreArgs"]] <- args
## choose serial or parallel mode
if (parallel_type == "multicore") {
message("Running in parallel mode with ", mc.cores, " cores.")
thisCall[[1]] <- quote(mcmapply)
thisCall[["mc.cores"]] <- mc.cores
}else if(parallel_type == "cluster"){
if(is.null(cl))
stop("cluster object 'cl' is empty!")
thisCall[[1]] <- quote(clusterMap)
thisCall[["cl"]] <- cl
thisCall[["fun"]] <- thisCall[["FUN"]]
thisCall[["FUN"]] <- NULL
thisCall[["SIMPLIFY"]] <- TRUE
}else {
thisCall[[1]] <- quote(mapply) #select loop mode
}
flist <- eval(thisCall)
# Handles the case that 'flist' is a list of lists.
# The outer lists correspond to the split by pData factors.
# The inner lists contain the actual gates.
# The order do not necessarily match up with sampleNames()
# Unforunately, we cannot simply use 'unlist' because the list element names
# are mangled.
if (all(sapply(flist, is.list))) {
flist <- do.call(c, unname(flist))
}
#check failed sample
#eventually we want to handle this properly (like inserting dummy gates)
#in order for the other samples proceed the gating
failed <- sapply(flist, function(i)extends(class(i), "character"))
if(any(failed)){
print(flist[failed])
stop("some samples failed!")
}
#this is flowClust-specific operation, which
# be abstracted out of this framework
if (extends(class(flist[[1]]), "fcFilter")) {
fcflist <- try(fcFilterList(flist), silent = TRUE)
if(!is(fcflist, "try-error"))
flist <- fcflist
}
is_clustering_results = is(flist[[1]], "factor")
if (is_clustering_results) {
if(popAlias != "*")
warning("popAlias is set to gating method name ",gating_method_name," because gating results are factors")
popAlias = gating_method_name
}
if(length(popAlias) == 1){
#when Alias is meta character, then pass NULL
# to add method which uses filterId slot to name the populations
if(popAlias == "*") {
popAlias <- NULL
}
}
# For gate_quad methods, need to filter down to just the gates that were asked for
if(names(x) %in% c("quadGate.seq", "gate_quad_sequential", "quadGate.tmix", "gate_quad_tmix")){
pops <- gtPop@name
pops <- gsub("([\\+-])([^/$])", "\\1&\\2", pops)
pops <- strsplit(pops, "&")[[1]]
pops <- strsplit(pops, "/")
pops <- paste0(rep(pops[[1]], each=length(pops[[2]])), pops[[2]])
pops <- match(pops, c("-+", "++", "+-", "--"))
flist <- lapply(flist, function(sublist) filters(sublist[pops]))
}
gs_node_id <- gs_pop_add(y, flist, parent = parent, name = popAlias, validityCheck = FALSE, negated = negated)
if(!is.null(popAlias) &&!is_clustering_results)
recompute(y, file.path(parent, popAlias))
else
recompute(y, parent)
message("done.")
}else{
message("Skip gating! Population '", paste(popAlias, collapse = ","), "' already exists.")
flist <- NULL
}
flist
}
# apply a \code{boolMethod} to the \code{GatingSet}
#' @rdname gt_gating
#' @aliases
#' gating,boolMethod,GatingSet-method
#' gating,boolMethod,GatingSetList-method
#' @noRd
gt_gating.boolMethod <- function(x, y, ...) {
.gating_boolMethod(x,y,...)
}
#' internal function (gating_boolMethod)
#'
#' @param y \code{GatingSet}
#' @param gtPop a \code{gtPopulation} object that contains the information of the cell population that is going to be generated by this gating method.
#' @param parent \code{character} specifying the parent node within \code{GatingSet} to which the new popoulation is to be attached.
#' @noRd
.gating_boolMethod <- function(x, y, gtPop, parent, ...) {
args <- parameters(x)[[1]]
gm <- paste0(".", names(x))
popAlias <- alias(gtPop)
popName <- names(gtPop)
popId <- gtPop@id
gs_nodes <- basename(gs_pop_get_children(y[[1]], parent))
tNodes <- deparse(args)
if (!(popAlias %in% gs_nodes)) {
message(popAlias, " gating...")
bf <- eval(substitute(booleanFilter(x), list(x = args)))
bf@filterId <- tNodes
#set recompute to FALSE because we want recompute method take over the
#computing job since it is smart on determining whehter flow data needs to be loaded
#for boolean gates
invisible(gs_node_id <- gs_pop_add(y, bf, parent = parent, name = popAlias))
newNode <- file.path(parent, popAlias)
invisible(recompute(y, newNode))
message("done.")
} else {
message("Skip gating! Population '", popAlias, "' already exists.")
}
# gs_node_id
NULL
}
# apply a \code{polyFunctions} gating method to the \code{GatingSet}
#
# It generates a batch of \code{boolMethod}s based on the expression defined in \code{polyFunctions} objects.
# It is a convenience way to generate different boolean combinations of cytokine gates.
#' @rdname gt_gating
#' @aliases
#' gating,polyFunctions,GatingSet-method
#' gating,polyFunctions,GatingSetList-method
#' @noRd
gt_gating.polyFunctions <- function(x, y, ...) {
.gating_polyFunctions(x,y,...)
}
#' internal function (gating_polyFunctions)
#'
#' @param y \code{GatingSet}
#' @param gtPop a \code{gtPopulation} object that contains the information of the cell population that is going to be generated by this gating method.
#' @param parent \code{character} specifying the parent node within \code{GatingSet} to which the new popoulation is to be attached.
#' @noRd
.gating_polyFunctions <- function(x, y, gtPop, parent, ...) {
.Defunct()
refNodes <- x@refNodes
popAlias <- alias(gtPop)
message("Population '", paste(popAlias, collapse = ","), "'")
nMarkers <- length(refNodes)
## all the comibnations of A & B & C
opList <- permutations(n = 1, r = nMarkers - 1, c("&"), repeats.allowed = TRUE)
isNotList <- permutations(n = 2, r = nMarkers, c("!", ""), repeats.allowed = TRUE)
polyExprsList <- apply(opList, 1, function(curOps) {
apply(isNotList, 1, function(curIsNot) {
polyExprs <- curIsNot
polyExprs[-1] <- paste0(curOps, curIsNot[-1])
paste(paste0(polyExprs, refNodes), collapse = "")
})
})
polyExprsList <- as.vector(polyExprsList)
gs_nodes <- basename(gs_pop_get_children(y[[1]], parent))
# actual gating
lapply(polyExprsList, function(polyExpr) {
#replace the slash with colon
#since forward slash is reserved for gating path
if(grepl("/",polyExpr)){
old_name <- polyExpr
new_name <- gsub("/",":",polyExpr)
warning(old_name, " is replaced with ", new_name)
}else
new_name <- polyExpr
# browser()
isExist <- new_name %in% gs_nodes
if (!isExist) {
message("adding ", new_name, " ...")
bf <- eval(substitute(booleanFilter(v), list(v = as.symbol(polyExpr))))
invisible(gs_node_id <- .addGate_fast(y, bf, parent = parent, name = polyExpr))
} else {
message("Skip!Population '", new_name, "' already exists.")
}
})
#to reduce overhead,compute from parent node once instead of do it multiple times for each individual new bool gate
invisible(recompute(y, parent))
message("done.")
list()
}
# apply a \code{refGate} to the \code{GatingSet}
#' @rdname gt_gating
#'
#' @aliases
#' gating,refGate,GatingSet-method
#' gating,refGate,GatingSetList-method
#' gating,dummyMethod,GatingSet-method
#' gating,dummyMethod,GatingSetList-method
#' @noRd
gt_gating.refGate <- function(x, y, ...) {
.gating_refGate(x, y, ...)
}
gt_gating.dummyMethod <- function(x, y, ...) {
#do nothing
}
#' internal function (gating_refGate)
#'
#' @param y \code{GatingSet}
#' @param gtPop a \code{gtPopulation} object that contains the information of the cell population that is going to be generated by this gating method.
#' @param parent \code{character} specifying the parent node within \code{GatingSet} to which the new popoulation is to be attached.
#' @noRd
.gating_refGate <- function(x, y, gtPop, parent, ...) {
# negated <- FALSE
refNodes <- x@refNodes
popAlias <- alias(gtPop)
popName <- names(gtPop)
dims <- dims(x)
my_gh <- y[[1]]
gs_nodes <- basename(gs_pop_get_children(my_gh, parent))
if (length(gs_nodes) == 0 || !popAlias %in% gs_nodes) {
message("Population '", paste(popAlias, collapse = ","), "'")
if (length(refNodes) > 2) {
stop("Not sure how to construct gate from more than 2 reference nodes!")
}
fr <- gh_pop_get_data(my_gh, use.exprs = FALSE)
#check if parent node is shared
#to determine whether simply grab the indices from ref nodes without recompute
ref_parents <- sapply(refNodes, function(refNode)gs_pop_get_parent(my_gh, refNode))
isSameParent <- all(ref_parents == parent)
flist <- flowWorkspace::lapply(y, function(gh) {
glist <- lapply(refNodes, function(refNode) {
gh_pop_get_gate(gh, refNode)
})
# standardize the names for the gate parameters and dims
gate_params <- unlist(lapply(glist, function(g) {
cur_param <- parameters(g)
getChannelMarker(fr, cur_param)["name"]
}))
negated_2d_gate <- FALSE
if(length(glist)==1){
#1d ref gate
dims <- dims[!is.na(dims)]
nDims <- length(dims)
if(nDims==2){
if (popName == "-") {
negated_2d_gate <- TRUE
}
fres <- glist[[1]]
}else{
dim_params <- getChannelMarker(fr, dims)["name"]
y_g <- glist[[1]]
y_coord <- c(y_g@min, y_g@max)
cut.y <- y_coord[!is.infinite(y_coord)]
if (popName == "+") {
#handle all infinite coordinates
if(length(cut.y) == 0)
cut.y <- -Inf
gate_coordinates <- list(c(cut.y, Inf))
} else if(popName=="-"){
if(length(cut.y) == 0)
cut.y <- Inf
gate_coordinates <- list(c(-Inf, cut.y))
}else{
stop("unknown population pattern, ",popName)
}
names(gate_coordinates) <- as.character(dim_params)
fres <- rectangleGate(gate_coordinates)
}
}else{
#2d quad gate
dim_params <- unlist(lapply(dims, function(dim) {
getChannelMarker(fr, dim)["name"]
}))
# match the gate param to dims to find gates for x, y dimensions
x_ref_id <- match(dim_params[1], gate_params)
y_ref_id <- match(dim_params[2], gate_params)
x_g <- glist[[x_ref_id]]
y_g <- glist[[y_ref_id]]
# pick the non-infinite coordinate as the cut points
x_coord <- c(x_g@min, x_g@max)
y_coord <- c(y_g@min, y_g@max)
x_inf_vec <- is.infinite(x_coord)
y_inf_vec <- is.infinite(y_coord)
cut.x <- x_coord[!x_inf_vec]
cut.y <- y_coord[!y_inf_vec]
# In order, the following vector has the patterns:
# 1. top left (-+)
# 2. top right (++)
# 3. bottom right (+-)
# 4. bottom left (--)
quadPatterns <- c("-+", "++", "+-", "--")
quadInd <- match(popName, quadPatterns)
is_negated <- lapply(refNodes, function(refNode) {
gh_pop_is_negated(gh, refNode)
})
x_ref <- refNodes[x_ref_id]
y_ref <- refNodes[y_ref_id]
x_negated <- is_negated[[x_ref_id]]
y_negated <- is_negated[[y_ref_id]]
#take into account of (-Inf, x) for bool operations in ocRectRefGate
if(x_coord[x_inf_vec] < 0)
x_negated <- !x_negated
if(y_coord[y_inf_vec] < 0)
y_negated <- !y_negated
#standardize event ind to x+ and y+
#by checking the positive sign of both reference gates
#to prepare for the bool operation later
if(length(cut.x) == 0){
#handle dummy ref gate that has both boudnary as Inf
# x_event_ind <- TRUE
x_ref <- NULL
}
if(length(cut.y) == 0){
# y_event_ind <- TRUE
y_ref <- NULL
}
# browser()
# construct rectangleGate from reference cuts
if (quadInd == 1) {#-+
#handle all infinite coordinates
if(length(cut.x) == 0)
cut.x <- Inf
else
{
if(!x_negated)
x_ref <- paste0("!", x_ref)
}
if(length(cut.y) == 0)
cut.y <- -Inf
else
{
if(y_negated)
y_ref <- paste0("!", y_ref)
}
coord <- list(c(-Inf, cut.x), c(cut.y, Inf))
} else if (quadInd == 2) {#++
#handle all infinite coordinates
if(length(cut.x) == 0)
cut.x <- -Inf
else
{
if(x_negated)
x_ref <- paste0("!", x_ref)
}
if(length(cut.y) == 0)
cut.y <- -Inf
else
{
if(y_negated)
y_ref <- paste0("!", y_ref)
}
coord <- list(c(cut.x, Inf), c(cut.y, Inf))
} else if (quadInd == 3) {#+-
#handle all infinite coordinates
if(length(cut.x) == 0)
cut.x <- -Inf
else
{
if(x_negated)
x_ref <- paste0("!", x_ref)
}
if(length(cut.y) == 0)
cut.y <- Inf
else
{
if(!y_negated)
y_ref <- paste0("!", y_ref)
}
coord <- list(c(cut.x, Inf), c(-Inf, cut.y))
} else if (quadInd == 4) {#--
#handle all infinite coordinates
if(length(cut.x) == 0)
cut.x <- Inf
else
{
if(!x_negated)
x_ref <- paste0("!", x_ref)
}
if(length(cut.y) == 0)
cut.y <- Inf
else
{
if(!y_negated)
y_ref <- paste0("!", y_ref)
}
coord <- list(c(-Inf, cut.x), c(-Inf, cut.y))
} else stop("Pop names does not match to any quadrant pattern!")
names(coord) <- as.character(dim_params)
fres <- rectangleGate(coord)
if(isSameParent&&!is.null(x_ref)&&!is.null(y_ref)){
fres <- ocRectRefGate(fres, paste0(x_ref, "&", y_ref))
}
}
attr(fres, "negated_2d_gate") <- negated_2d_gate
fres
})
negated_2d_gate <- attr(flist[[1]], "negated_2d_gate")
flist <- filterList(flist)
gs_node_id <- gs_pop_add(y, flist, parent = parent, name = popAlias, validityCheck = FALSE, negated = negated_2d_gate)
if(!is(flist[[1]], "ocRectRefGate"))
recompute(y, file.path(parent, popAlias))
} else {
message("Skip gating! Population '", popAlias, "' already exists.")
flist <- NULL
}
message("done.")
flist
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.