#' Top 'N' Best Meta-Features
#'
#' Take the resulting list of meta-features returned from \code{candidate_search()}
#' and fetch the meta-feature with the best score
#' @param topn_list A nested list of objects that is returned from \code{candidate_search()}
#' by setting \code{FS = sim_FS}, \code{input_score = sim_Scores}, \code{top_N = 7},
#' \code{method = "ks_pval"}, \code{alternative = "less"}, \code{search_method = "both"},
#' \code{max_size = 10}, and \code{best_score_only = FALSE}. The nested list contains
#' the meta-feature sets as well as the observed input scores and its corresponding
#' best score for each top 'N' search.
#'
#' @return A list of objects containing the best meta-feature, its corresponding best score,
#' and observed input scores
#'
#' @examples
#'
#' # Load pre-computed Top-N list generated for sim_FS dataset
#' data(topn_list)
#'
#' # Get the best meta-features list
#' topn_best_meta <- topn_best(topn_list = topn_list)
#'
#' @export
topn_best <- function(topn_list){
# get best score list
scores_l <- lapply(seq_along(topn_list),
function(l){ topn_list[[l]][['score']] })
# Working with scores for each top N run
scores <- unlist(scores_l)
# Fetch the index housing the best FS
# Based on the statistics, the largest value will be the most significant
n <- which.max(scores)
# Obtain the best score
top_score <- max(scores)
# Corresponding FS object
best_meta <- topn_list[[n]]$feature_set
# Correspoding input_score
best_input_score <- topn_list[[n]]$input_score
return(
list(
"feature_set" = best_meta,
"input_score" = best_input_score,
"score" = top_score
)
)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.