Description Usage Arguments Value Examples
Solvers such as LASSO penalize predictors on a scale of 1 (full weight) to infinity (zero weight).
With the rescalePredictorWeights
method, incoming raw values can be scaled between a possibly
theoretical minimum and maximum value.
1 2 3 | ## S4 method for signature 'Solver'
rescalePredictorWeights(obj, rawValue.min, rawValue.max,
rawValues)
|
obj |
An object of the Solver class |
rawValue.min |
The minimum value of the raw expression values |
rawValue.max |
The maximum value of the raw expression values |
rawValues |
A matrix of raw expression values |
A matrix of the raw values re-scaled using the minimum and maximum values
1 2 3 4 5 6 7 | # Create a LassoSolver object using the included Alzheimer's data and rescale the predictors
load(system.file(package="trena", "extdata/ampAD.154genes.mef2cTFs.278samples.RData"))
targetGene <- "MEF2C"
candidateRegulators <- setdiff(rownames(mtx.sub), targetGene)
ls <- LassoSolver(mtx.sub, targetGene, candidateRegulators)
raw.values <- c(241, 4739, 9854, 22215, 658334)
cooked.values <- rescalePredictorWeights(ls, rawValue.min = 1, rawValue.max = 1000000, raw.values)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.