R/PCAMax.R

Defines functions .normalize_correlationValues .normalize_betaValues .normalize_pval .normalize_randomForest PCAMax

Documented in PCAMax

#' Class PCAMax
#'
#' @import methods
#' @import utils
#'
#' @name PCAMax
#'
.pcaMax <- setClass("PCAMax",
                    slots=c(tbl="data.frame",
                            solverNames="character",
                            state="environment")
                    )

#------------------------------------------------------------------------------------------------------------------------
setGeneric("normalizeModel",   signature="obj", function(obj, normalizing.max=10)
            standardGeneric ("normalizeModel"))
setGeneric("addStats",         signature="obj", function(obj, varianceToInclude=0.75, scalePCA=FALSE) standardGeneric ("addStats"))
setGeneric("addStatsSimple",   signature="obj", function(obj, varianceToInclude=0.75, scalePCA=FALSE, excludeLasso=TRUE, quiet=TRUE) standardGeneric ("addStatsSimple"))
setGeneric("getCoverage",      signature="obj", function(obj) standardGeneric ("getCoverage"))
#------------------------------------------------------------------------------------------------------------------------
#' Create a PCAMax object from a data.frame produced by the EnsembleSolver
#'
#' @param tbl a data.frame
#' @param tfIdentifierColumnName a character string identifying the transcription factor column
#'
#' @return a PCAMax object
#'
#' @seealso  \code{\link{EnsembleSolver}}
#'
#' @export
#'
PCAMax <- function(tbl, tfIdentifierColumnName="tf.hgnc")
{
    stopifnot(tfIdentifierColumnName %in% colnames(tbl))
    standardSolverNames <- c("betaLasso", "lassoPValue", "pearsonCoeff", "rfScore",
                             "betaRidge", "spearmanCoeff")

    coi <- intersect(standardSolverNames, colnames(tbl))
    if(length(coi) < 3)
      stop(sprintf("insufficient dimensions,  %d in EnsembleSolver data.frame to calculate pcaMax", length(coi)))

    tbl.trimmed <- tbl[, coi]
    rownames(tbl.trimmed) <- tbl[, tfIdentifierColumnName]
    state <- new.env(parent=emptyenv())
    state$coverage <- 0
    state$tbl.orig <- tbl
    .pcaMax(tbl=tbl.trimmed, solverNames=standardSolverNames, state=state)

} # PCAMax ctor
#------------------------------------------------------------------------------------------------------------------------
#' transform a specific column to fit normal distribution
#'
#' @rdname normalizeModel
#' @aliases normalizeModel
#'
#' @param obj An object of the class PCAMax
#' @param normalizing.max numeric, a maximum value for the normalized distrubtions
#'
#' @return a normalized matrix, each column treated separately
#'
#' @export
#'
setMethod('normalizeModel', 'PCAMax',

     function(obj, normalizing.max=10){

        mtx <- as.matrix(obj@tbl)
        for(colname in colnames(mtx)){
           vec <- as.numeric(mtx[, colname])
           if(colname %in% c("betaLasso", "betaRidge"))
              vec.norm <- .normalize_betaValues(vec, normalizing.max)
           if(colname == "lassoPValue")
              vec.norm <- .normalize_pval(vec, normalizing.max)
           if(colname == "rfScore")
              vec.norm <- .normalize_randomForest(vec, normalizing.max)
           if(colname %in% c("spearmanCoeff", "pearsonCoeff"))
              vec.norm <- .normalize_correlationValues(vec, normalizing.max)
           mtx[, colname] <- vec.norm
           } # for colname
        obj@state$normalizedMatrix <- mtx
        mtx
        })

#------------------------------------------------------------------------------------------------------------------------
#' add PCA-based summary stats on all TFs in the model
#'
#' @rdname addStats
#' @aliases addStats
#'
#' @param obj An object of the class PCAMax
#' @param varianceToInclude numeric variance to include in the PCA
#' @param scalePCA logical
#'
#' @return  the original model with extra columns: pcaMax, cov, PC1, PC2,
#'
#' @export
#'
setMethod('addStats', 'PCAMax',

     function(obj, varianceToInclude=0.75, scalePCA=FALSE){
        stopifnot(varianceToInclude > 0)
        mtx <- obj@state$normalizedMatrix
           # try removing lassoPValue
        col.rm <- grep("lassoPValue", colnames(mtx))
        if(length(col.rm) > 0)
           mtx <- mtx[, -col.rm]
        pca <- prcomp(mtx, scale=scalePCA)
            #
        if(varianceToInclude > 0.95)
           numberOfComponents <- length(pca$sdev)
        numberOfComponents <- which(cumsum(pca$sdev/sum(pca$sdev) ) > varianceToInclude)[1]
        obj@state$pca <- pca
        mtx.pca <- pca$x
         # coverage: the variance covered by the first two components
        obj@state$coverage <- sum(pca$sdev[1:2]) / sum(pca$sdev)
        mean <- apply(mtx, 1, function(row) mean(abs(row)))
        mtx.2 <- cbind(mtx, mean)
        rms <- apply(mtx, 1, function(row) sqrt(mean(row * row)))
        calc.pc.vector.length <- function(row, numberOfComponents){
           sum.of.squares <- 0
           for(i in seq_len(numberOfComponents)){
              new.sum <- row[i] * row[i]
              sum.of.squares <- sum.of.squares + new.sum
              }
           sqrt(sum.of.squares/numberOfComponents)
           }
        pcaMax <- as.numeric(apply(mtx.pca, 1, function(row) calc.pc.vector.length(row, numberOfComponents)))
        #mtx.3 <- cbind(mtx.2, rms)
        #mtx.4 <- cbind(mtx.3, mtx.pca[, 1:2])
        #mtx.5 <- cbind(mtx.4, pcaMax)
          #  use coefficient of variation to desribe the dispersion (agreement) of the data
        covar <- apply(mtx, 1, function(row) sd(abs(row))/mean(abs(row)))
        #mtx.6 <- cbind(mtx.5, covar)
        #mtx.7 <- mtx.6[order(mtx.6[, "pcaMax"], decreasing=TRUE),]
        #obj@state$normalizedMatrixWithStats <- mtx.7
        tbl.out <- obj@state$tbl.orig
        existing.pcaMax.column <- grep("pcaMax", colnames(tbl.out))
        if(length(existing.pcaMax.column) > 0)
           tbl.out <- tbl.out[, -existing.pcaMax.column]
        tbl.out <- cbind(tbl.out, pcaMax)
        tbl.out$covar <- covar
        tbl.out <- tbl.out[order(tbl.out$pcaMax, decreasing=TRUE),]
        tbl.out$rank <- seq_len(nrow(tbl.out))

        tbl.out
        })

#------------------------------------------------------------------------------------------------------------------------
#' add PCA-based summary stats on all TFs in the model
#'
#' @rdname addStatsSimple
#' @aliases addStatsSimple
#'
#' @param obj An object of the class PCAMax
#' @param varianceToInclude numeric variance to include in the PCA
#' @param scalePCA logical
#' @param excludeLasso logical excluding lasso avoids dropping TFs due to shrinkage
#' @param quiet logical
#'
#' @return  the original model with extra columns: pcaMax, cov, PC1, PC2,
#'
#' @export
#'
setMethod('addStatsSimple', 'PCAMax',

     function(obj, varianceToInclude=0.75, scalePCA=FALSE, excludeLasso=TRUE, quiet=TRUE){
        stopifnot(varianceToInclude > 0)
        mtx <- obj@state$normalizedMatrix
           # try removing lassoPValue
        if(excludeLasso){
           col.rm <- grep("lasso", colnames(mtx), ignore.case=TRUE)
           printf("exluding %d lasso-related columns", length(col.rm))
           if(length(col.rm) > 0)
              mtx <- mtx[, -col.rm]
           } # if excludeLasso
        scoreRow <- function(row){
           zeros <- which(abs(row) < 1e-10)
           if(length(zeros) > 0){
              #printf("reducing row by %d", length(zeros))
              row <- row[-zeros]
              }
           sum(abs(row))/length(row)
           }
        score <- round(apply(mtx, 1, scoreRow), digits=2)
        if(!quiet){
           print(mtx)
           print(score)
           }

        score.norm <- round(100 * (score/max(score)))
        tbl.out <- cbind(obj@state$tbl.orig, score.norm)
        tbl.out <- cbind(tbl.out, score)
        tbl.out <- tbl.out[order(tbl.out$score, decreasing=TRUE),]
        tbl.out$rank <- seq_len(nrow(tbl.out))
        tbl.out
        })

#------------------------------------------------------------------------------------------------------------------------
#' what percentage of the variance is captured in the first two principal components?
#'
#' @rdname getCoverage
#' @aliases getCoverage
#'
#' @param obj An object of the class PCAMax
#'
#' @return a number between zero and one
#'
#' @export
#'
setMethod('getCoverage', 'PCAMax',

     function(obj){
        obj@state$coverage
     })

#------------------------------------------------------------------------------------------------------------------------
.normalize_randomForest <- function(vector, normalizing.max=10)
{
   third.quartile.normalizing.max <- 0.75 * normalizing.max
   third.quartile <- fivenum(vector)[4]
   actual.max <- third.quartile
   scale <- third.quartile.normalizing.max/actual.max
   vector * scale

} # .normalize_randomForest
#------------------------------------------------------------------------------------------------------------------------
.normalize_pval <- function(vector, normalizing.max=10)
{
   stopifnot(all(vector >= 0))
   # x <- -log10(vector + temper.pvalue.amount) #   ensure no zero values, suppress large numbers
   x <- -log10(vector +  .Machine$double.xmin)  #   ensure no zero values
   actual.max <- max(x)
   scale <- normalizing.max/actual.max
   x * scale

} # .normalize_pval
#------------------------------------------------------------------------------------------------------------------------
.normalize_betaValues <- function(vector, normalizing.max=10)
{
   actual.max <- max(abs(vector))
   scale <- normalizing.max/actual.max
   vec.new <- vector * scale
   vec.new

} # .normalize_betaValues
#------------------------------------------------------------------------------------------------------------------------
.normalize_correlationValues <- function(vector, normalizing.max=10)
{
   actual.max <- 1
   scale <- normalizing.max/actual.max
   vector * scale

} # .normalize_correlationValues
#------------------------------------------------------------------------------------------------------------------------
#              # Replace missing values and scale the data
#              # Use the *.med and *.scale values to center/scale everything
#              tbl.all[is.na(tbl.all)] <- 0
#              tbl.scale <- tbl.all[-1]
#
#              if(
# "lassoPValue" %in% names(tbl.scale)){
#                  tbl.scale$lassoPValue <- -log10(tbl.scale$lassoPValue)
#                  tbl.scale$lassoPValue <- scale(tbl.scale$lassoPValue,
#                                                   center = lassopv.med,
#                                                   scale = lassopv.scale)
#              }
#
#              if("betaLasso" %in% names(tbl.scale)){
#                  tbl.scale$betaLasso <- scale(tbl.scale$betaLasso,
#                                                center = lasso.med,
#                                                scale = lasso.scale)
#              }
#
#              if("betaRidge" %in% names(tbl.scale)){
#                  tbl.scale$betaRidge <- scale(tbl.scale$betaRidge,
#                                                center = ridge.med,
#                                                scale = ridge.scale)
#              }
#
#              if("pearsonCoeff" %in% names(tbl.scale)){
#                  tbl.scale$pearsonCoeff <- scale(tbl.scale$pearsonCoeff,
#                                                   center = pearson.med,
#                                                   scale = pearson.scale)
#              }
#
#              if("spearmanCoeff" %in% names(tbl.scale)){
#                  tbl.scale$spearmanCoeff <- scale(tbl.scale$spearmanCoeff,
#                                                    center = spearman.med,
#                                                    scale = spearman.scale)
#              }
#
#
#              if("bayesScore" %in% names(tbl.scale)){
#                  tbl.scale$bayesScore <- scale(tbl.scale$bayesScore,
#                                             center = bayesspike.med,
#                                             scale = bayesspike.scale)
#              }
#
#              if("rfScore" %in% names(tbl.scale)){
#                  tbl.scale$rfScore <- scale(tbl.scale$rfScore,
#                                              center = randomforest.med,
#                                              scale = randomforest.scale)
#              }
#
#              rownames(tbl.scale) <- tbl.all$gene
#
#              tbl.augmented <- try(.addEnsembleScores(tbl.scale, tbl.all), silent = TRUE)
#
##------------------------------------------------------------------------------------------------------------------------
#.addEnsembleScores <- function(tbl.scale, tbl.all) {
#
#    # Compute the scaled "concordance score"
#    pca <- stats::prcomp(tbl.scale, center=FALSE, scale.=FALSE)
#
#    pca$x <- pca$x / sqrt(length(which(pca$sdev > 0.1)))
#    concordance <- apply(pca$x[, pca$sdev > 0.1, drop=FALSE], 1,
#                         function(x) {sqrt(mean((2*atan(x)/pi)^2))})
#    concordance <- as.data.frame(concordance)
#    concordance$gene <- rownames(concordance)
#    rownames(concordance) <- NULL
#    tbl.all <- merge(tbl.all, concordance, by = "gene", all = TRUE)
#
#    # Transform via PCA and compute the pcaMax score
#    pcaMax <- apply(pca$x[, pca$sdev > 0.1, drop=FALSE],1, function(x) {sqrt(mean(x*x))})
#    pcaMax <- as.data.frame(pcaMax)
#    pcaMax$gene <- rownames(pcaMax)
#    rownames(pcaMax) <- NULL
#    tbl.all <- merge(tbl.all, pcaMax, by = "gene", all = TRUE)
#
#    # Sort by pcaMax
#    tbl.all <- tbl.all[order(tbl.all$pcaMax, decreasing = TRUE),]
#
#    return(tbl.all)
#}
##------------------------------------------------------------------------------------------------------------------------
##----------------------------------------------------------------------------------------------------
PriceLab/TReNA documentation built on March 21, 2023, 1:57 p.m.