colWeightedVars: Calculates the weighted standard deviation for each row...

colWeightedSds,DelayedMatrix-methodR Documentation

Calculates the weighted standard deviation for each row (column) of a matrix-like object

Description

Calculates the weighted standard deviation for each row (column) of a matrix-like object.

Usage

## S4 method for signature 'DelayedMatrix'
colWeightedSds(
  x,
  w = NULL,
  rows = NULL,
  cols = NULL,
  na.rm = FALSE,
  force_block_processing = FALSE,
  ...,
  useNames = TRUE
)

## S4 method for signature 'DelayedMatrix'
colWeightedVars(
  x,
  w = NULL,
  rows = NULL,
  cols = NULL,
  na.rm = FALSE,
  force_block_processing = FALSE,
  ...,
  useNames = TRUE
)

## S4 method for signature 'DelayedMatrix'
rowWeightedSds(
  x,
  w = NULL,
  rows = NULL,
  cols = NULL,
  na.rm = FALSE,
  force_block_processing = FALSE,
  ...,
  useNames = TRUE
)

## S4 method for signature 'DelayedMatrix'
rowWeightedVars(
  x,
  w = NULL,
  rows = NULL,
  cols = NULL,
  na.rm = FALSE,
  force_block_processing = FALSE,
  ...,
  useNames = TRUE
)

Arguments

x

A NxK DelayedMatrix.

w

A numeric vector of length K (N) that specifies by how much each element is weighted.

rows, cols

A vector indicating the subset of rows (and/or columns) to operate over. If NULL, no subsetting is done.

na.rm

If TRUE, missing values (NA or NaN) are omitted from the calculations.

force_block_processing

FALSE (the default) means that a seed-aware, optimised method is used (if available). This can be overridden to use the general block-processing strategy by setting this to TRUE (typically not advised). The block-processing strategy loads one or more (depending on ⁠\link[DelayedArray]{getAutoBlockSize}()⁠) columns (colFoo()) or rows (rowFoo()) into memory as an ordinary base::array.

...

Additional arguments passed to specific methods.

useNames

If TRUE (default), names attributes of result are set. Else if FALSE, no naming support is done.

Details

The S4 methods for x of type matrix, array, table, or numeric call matrixStats::rowWeightedSds / matrixStats::colWeightedSds.

Value

Returns a numeric vector of length N (K).

Author(s)

Peter Hickey

See Also

  • matrixStats::rowWeightedSds() and matrixStats::colWeightedSds() which are used when the input is a matrix or numeric vector.

  • See also rowSds for the corresponding unweighted function.

Examples

# A DelayedMatrix with a 'SolidRleArraySeed' seed
dm_Rle <- RleArray(Rle(c(rep(1L, 5),
                         as.integer((0:4) ^ 2),
                         seq(-5L, -1L, 1L))),
                   dim = c(5, 3))

colWeightedSds(dm_Rle, w = 1 / rowMeans2(dm_Rle))

# Specifying weights inversely proportional to rowwise means
colWeightedVars(dm_Rle, w = 1 / rowMeans2(dm_Rle))

# Specifying weights inversely proportional to columnwise means
rowWeightedSds(dm_Rle, w = 1 / colMeans2(dm_Rle))

# Specifying weights inversely proportional to columnwise means
rowWeightedVars(dm_Rle, w = 1 / colMeans2(dm_Rle))

PeteHaitch/DelayedMatrixStats documentation built on Jan. 10, 2025, 7:29 p.m.