#' Plots about DESeq2 dispersions
#'
#' A plot of the mean-dispersion relationship and a diagnostic of log normality of the dispersions (if use of DESeq2)
#'
#' @param dds a \code{DESeqDataSet} object
#' @param outfile TRUE to export the figure in a png file
#' @param ggplot_theme ggplot2 theme function (\code{theme_gray()} by default)
#' @return A file named dispersionsPlot.png in the figures directory containing the plot of the mean-dispersion relationship and a diagnostic of log normality of the dispersions
#' @author Marie-Agnes Dillies and Hugo Varet
dispersionsPlot <- function(dds, outfile=TRUE, ggplot_theme=theme_gray()){
if (outfile) png(filename="figures/dispersionsPlot.png", width=3600, height=1800, res=300)
# dispersions plot
d <- as.data.frame(mcols(dds)[,c("baseMean", "dispGeneEst", "dispFit", "dispersion")])
d <- d[which(d$baseMean > 0),]
d <- data.frame(baseMean=rep(d$baseMean, 3),
value=c(d$dispGeneEst, d$dispersion, d$dispFit),
variable=factor(rep(c("dispGeneEst", "dispersion", "dispFit"), each=nrow(d)),
levels=c("dispGeneEst", "dispersion", "dispFit")))
p1 <- ggplot(d, aes(x=.data$baseMean, y=.data$value, colour=.data$variable)) +
geom_point(size=0.1) +
scale_x_continuous(trans = log10_trans(),
breaks = trans_breaks("log10", function(x) 10^x),
labels = trans_format("log10", math_format())) +
scale_y_continuous(trans = log10_trans(),
breaks = trans_breaks("log10", function(x) 10^x),
labels = trans_format("log10", math_format())) +
ylab("Dispersion") +
xlab("Mean of normalized counts") +
scale_colour_manual(
values=c("Black", "#377eb8", "#e41a1c"),
breaks=c("dispGeneEst", "dispersion", "dispFit"),
labels=c("Estimate", "Final", "Fit"),
name="") +
guides(colour = guide_legend(override.aes = list(size=2))) +
ggtitle("Dispersions") +
ggplot_theme
# diagnostic of log normality
disp <- mcols(dds)$dispGeneEst
disp <- disp[!is.na(disp)]
disp <- disp[disp>1e-8]
d <- data.frame(disp)
p2 <- ggplot(data=d, aes(x=.data$disp)) +
geom_histogram(bins=80, aes(y=.data$..density..)) +
scale_x_continuous(trans = log10_trans(),
breaks = trans_breaks("log10", function(x) 10^x),
labels = trans_format("log10", math_format())) +
scale_y_continuous(expand=expansion(mult=c(0.01, 0.05))) +
xlab("Feature dispersion estimate") +
ylab("Density") +
ggtitle("log-normality dispersion diagnostic") +
stat_function(fun = function(x, ...){dnorm(log10(x), ...)},
args = list(mean = mean(log10(disp), na.rm=TRUE),
sd = sd(log10(disp), na.rm=TRUE))) +
ggplot_theme
grid.arrange(p1, p2, layout_matrix=matrix(c(1, 1, 1, 1, 1, 2, 2, 2, 2), nrow=1))
if (outfile) dev.off()
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.