R/scDD-estimate.R

Defines functions scDDEstimate.default scDDEstimate.SingleCellExperiment scDDEstimate.matrix scDDEstimate

Documented in scDDEstimate scDDEstimate.default scDDEstimate.matrix scDDEstimate.SingleCellExperiment

#' Estimate scDD simulation parameters
#'
#' Estimate simulation parameters for the scDD simulation from a real dataset.
#'
#' @param counts either a counts matrix or a SingleCellExperiment object
#'        containing count data to estimate parameters from.
#' @param conditions Vector giving the condition that each cell belongs to.
#'        Conditions can be 1 or 2.
#' @param condition String giving the column that represents biological group of
#'        interest.
#' @param params SCDDParams object to store estimated values in.
#' @param verbose logical. Whether to show progress messages.
#' @param BPPARAM A \code{\link{BiocParallelParam}} instance giving the parallel
#'        back-end to be used. Default is \code{\link{SerialParam}} which uses a
#'        single core.
#' @param ... further arguments passed to or from other methods.
#'
#' @details
#' This function applies \code{\link[scDD]{preprocess}} to the counts then uses
#' \code{\link[scDD]{scDD}} to estimate the numbers of each gene type to
#' simulate. The output is then converted to a SCDDParams object. See
#' \code{\link[scDD]{preprocess}} and \code{\link[scDD]{scDD}} for details.
#'
#' @return SCDDParams object containing the estimated parameters.
#'
#' @examples
#' if (requireNamespace("scDD", quietly = TRUE)) {
#'     library(scuttle)
#'     set.seed(1)
#'     sce <- mockSCE(ncells = 20, ngenes = 100)
#'
#'     colData(sce)$condition <- sample(1:2, ncol(sce), replace = TRUE)
#'     params <- scDDEstimate(sce, condition = "condition")
#'     params
#' }
#'
#' @importFrom BiocParallel SerialParam
#' @export
scDDEstimate <- function(counts, # conditions, condition,
                         params = newSCDDParams(), verbose = TRUE,
                         BPPARAM = SerialParam(), ...) {
    UseMethod("scDDEstimate")
}

#' @rdname scDDEstimate
#' @importFrom SingleCellExperiment SingleCellExperiment
#' @export
scDDEstimate.matrix <- function(counts, params = newSCDDParams(),
                                verbose = TRUE, BPPARAM = SerialParam(),
                                conditions, ...) {
    checkmate::assertMatrix(
        counts,
        mode = "numeric",
        any.missing = FALSE,
        min.rows = 1,
        min.cols = 1,
        row.names = "unique",
        col.names = "unique"
    )
    checkmate::assertIntegerish(
        conditions,
        len = ncol(counts),
        lower = 1,
        upper = 2
    )

    counts <- SingleCellExperiment(
        assays = list(counts = counts),
        colData = data.frame(condition = conditions)
    )
    scDDEstimate.default(
        counts, params, verbose, BPPARAM,
        condition = "condition"
    )
}

#' @rdname scDDEstimate
#' @export
scDDEstimate.SingleCellExperiment <- function(counts,
                                              params = newSCDDParams(),
                                              verbose = TRUE,
                                              BPPARAM = SerialParam(),
                                              condition = "condition", ...) {
    scDDEstimate.default(
        counts, params, verbose, BPPARAM,
        condition = condition
    )
}

#' @rdname scDDEstimate
#' @importFrom methods as
#' @export
scDDEstimate.default <- function(counts,
                                 params = newSCDDParams(), verbose = TRUE,
                                 BPPARAM = SerialParam(), condition, ...) {
    checkmate::assertClass(params, "SCDDParams")
    checkmate::assertClass(counts, "SingleCellExperiment")
    checkmate::assertCharacter(condition,
        min.chars = 1, any.missing = FALSE,
        len = 1
    )
    if (!(condition %in% colnames(SummarizedExperiment::colData(counts)))) {
        stop("'condition' must be the name of a column in `colData(counts)`")
    }

    if (verbose) {
        processed <- scDD::preprocess(counts, condition, median_norm = TRUE)
    } else {
        processed <- suppressMessages(
            scDD::preprocess(counts, condition, median_norm = TRUE)
        )
    }

    if (verbose) {
        SCdat <- scDD::scDD(
            processed,
            testZeroes = FALSE,
            param = BPPARAM,
            condition = condition
        )
    } else {
        SCdat <- withr::with_output_sink(tempfile(), {
            suppressMessages(
                scDD::scDD(
                    processed,
                    testZeroes = FALSE,
                    param = BPPARAM,
                    condition = condition
                )
            )
        })
    }

    res <- scDD::results(SCdat)
    res <- res[!is.na(res$DDcategory), ]
    dd.cats <- table(res$DDcategory)

    not.dd <- res$DDcategory == "NS"
    nDE <- ifelse("DE" %in% names(dd.cats), dd.cats["DE"], 0)
    nDP <- ifelse("DP" %in% names(dd.cats), dd.cats["DP"], 0)
    nDM <- ifelse("DM" %in% names(dd.cats), dd.cats["DM"], 0)
    nDB <- ifelse("DB" %in% names(dd.cats), dd.cats["DB"], 0)
    nEP <- sum(res$Clusters.c1[not.dd] > 1 & res$Clusters.c2[not.dd] > 1)
    nEE <- nrow(counts) - nDE - nDP - nDM - nDB - nEP

    params <- setParams(
        params,
        nCells = round(dim(SCdat)[2] / 2),
        SCdat = SCdat,
        nDE = nDE,
        nDP = nDP,
        nDM = nDM,
        nDB = nDB,
        nEE = nEE,
        nEP = nEP
    )

    return(params)
}
Oshlack/splatter documentation built on Dec. 10, 2024, 3:48 p.m.