#' differential_expression_analysis UI Function
#'
#' @description A shiny Module.
#'
#' @param id,input,output,session Internal parameters for {shiny}.
#'
#' @noRd
#'
#' @importFrom shiny NS tagList
mod_differential_expression_analysis_ui <- function(id) {
ns <- NS(id)
tagList(
shiny::h1("Differential expression analysis"),
shiny::hr(),
#shinyalert::useShinyalert(),
shinybusy::add_busy_spinner(
spin = "self-building-square",
position = 'top-left',
margins = c(70, 1200)
),
# ____________________________________________________________________________
# Dispersion estimation ####
shiny::fluidRow(
shinydashboardPlus::box(
title = "Settings",
solidHeader = FALSE,
status = "success",
collapsible = TRUE,
closable = FALSE,
width = 4,
shiny::h4("Estimation of disperion"),
col_2(
shinyWidgets::dropdownButton(
size = 'xs',
shiny::includeMarkdown(system.file("extdata", "edgeR.md", package = "DIANE")),
circle = TRUE,
status = "success",
icon = shiny::icon("question"),
width = "600px",
tooltip = shinyWidgets::tooltipOptions(title = "More details")
)
),
shiny::hr(),
# ____________________________________________________________________________
# DEG parameters ####
shiny::h4("Conditions to compare for differential analysis : "),
shiny::uiOutput(ns("condition_choices")),
shiny::numericInput(
ns("dea_fdr"),
min = 0,
max = 1,
value = 0.05,
label = "Adjusted pvalue ( FDR )"
),
shiny::numericInput(
ns("dea_lfc"),
min = 0,
max = Inf,
value = 1,
label = "Absolute Log Fold Change ( Log2 ( Perturbation / Reference ) ) :"
),
shinyWidgets::actionBttn(
ns("deg_test_btn"),
label = "Detect differentially expressed genes",
color = "success",
style = "material-flat"
),
shiny::hr(),
shiny::uiOutput(ns("deg_test_summary")),
shiny::hr(),
shiny::uiOutput(ns("deg_number_summary")),
shiny::hr(),
shiny::br(),
shiny::uiOutput(ns("dl_bttns"))
),
# ____________________________________________________________________________
# Visualisation of the results ####
shinydashboard::tabBox(
title = "Results",
width = 8,
shiny::tabPanel(title = "Results table",
shiny::uiOutput(ns("table_ui"))),
shiny::tabPanel(
title = "MA - Vulcano plots",
shinyWidgets::switchInput(
inputId = ns("MA_vulcano_switch"),
value = TRUE,
onLabel = "MA",
offLabel = "Volcano",
onStatus = 'success'
),
shiny::plotOutput(ns("ma_vulcano"), height = "700px")
),
shiny::tabPanel(
title = "Heatmap",
shiny::uiOutput(ns("heatmap_conditions_choice")),
shiny::plotOutput(ns("heatmap"), height = "700px")
),
# ____________________________________________________________________________
# Go enrichment ####
shiny::tabPanel(
title = "Gene Ontology enrichment",
shinyWidgets::radioGroupButtons(
ns("up_down_go_radio"),label = "Genes to study :",
choices = c("All", "Up-regulated", "Down-regulated"),
selected = "All",
direction = "horizontal",
checkIcon = list(yes = shiny::icon("ok",
lib = "glyphicon"))
),
col_4(
shinyWidgets::actionBttn(
ns("go_enrich_btn"),
label = "Start GO enrichment analysis",
color = "success",
style = "material-flat"
)
),
col_4(
shinyWidgets::radioGroupButtons(
ns("draw_go"),
choices = c("Dot plot", "Enrichment map", "Data table"),
selected = "Dot plot",
justified = TRUE,
direction = "vertical",
checkIcon = list(yes = shiny::icon("ok",
lib = "glyphicon"))
)
),
col_4(
shinyWidgets::radioGroupButtons(
ns("go_type"),
choiceNames = c(
"Biological process",
"Cellular component",
"Molecular function"
),
choiceValues = c("BP", "CC", "MF"),
selected = "BP",
justified = TRUE,
direction = "vertical",
checkIcon = list(yes = shiny::icon("ok",
lib = "glyphicon"))
),
shiny::uiOutput(ns("max_go_choice"))
),
shiny::uiOutput(ns("custom_data_go")),
shiny::hr(),
shiny::fluidRow(col_12(shiny::uiOutput(ns(
"go_results"
))))
),
shiny::tabPanel(
title = "Compare genes lists (Venn)",
shiny::h5(
"Once more than one differential expression analysis were performed,
you can visualise and compare the different genes lists in a Venn
diagram."
),
shiny::uiOutput(ns("venn_lists_choice_2")),
shiny::plotOutput(ns("venn"), height = "700px"),
shiny::uiOutput(ns("venn_spec_comp_choice_2")),
shiny::uiOutput(ns("venn_spec_comp_bttn_2"))
)
)
)
)
}
# __________________________________________________________________________________________________________________________________
# Server ####
#' differential_expression_analysis Server Function
#'
#' @noRd
mod_differential_expression_analysis_server <-
function(input, output, session, r) {
ns <- session$ns
r_dea <- shiny::reactiveValues(
top_tags = NULL,
DEGs = NULL,
ref = NULL,
trt = NULL,
lfc = NULL,
fdr = NULL,
gene_table = NULL
)
# ____________________________________________________________________________
# Condition choices ui ####
output$condition_choices <- shiny::renderUI({
req(r$conditions)
tagList(
col_6(
shinyWidgets::radioGroupButtons(
inputId = ns("reference"),
label = "Reference",
choices = unique(r$conditions),
justified = TRUE,
direction = "vertical",
checkIcon = list(yes = shiny::icon("ok",
lib = "glyphicon"))
)
),
col_6(
shinyWidgets::radioGroupButtons(
inputId = ns("perturbation"),
label = "Perturbation",
choices = unique(r$conditions),
selected = unique(r$conditions)[2],
justified = TRUE,
direction = "vertical",
checkIcon = list(yes = shiny::icon("ok",
lib = "glyphicon"))
)
)
)
})
# ____________________________________________________________________________
# custom go ####
output$custom_data_go <- shiny::renderUI({
shiny::req(r$organism == "Other")
shiny::req(is.null(r$custom_go))
tagList(
col_2(
shinyWidgets::dropdownButton(
size = 'xs',
shiny::includeMarkdown(system.file("extdata", "custom_go.md", package = "DIANE")),
circle = TRUE,
status = "success",
icon = shiny::icon("question"),
width = "600px",
tooltip = shinyWidgets::tooltipOptions(title = "More details")
)
),
col_10(
shiny::h4(
"Your organism is not known to DIANE, but you can provide a matching between
gene IDs and GO IDs."
)
),
col_6(shiny::radioButtons(
ns('sep'),
'Separator : ',
c(
Comma = ',',
Semicolon = ';',
Tab = '\t'
),
inline = TRUE
)),
col_6(
shiny::fileInput(
ns('go_data'),
'Choose CSV/TXT GO terms file',
accept = c(
'text/csv',
'text/comma-separated-values,text/plain',
'.csv',
'.txt'
)
)
)
)
})
# ____________________________________________________________________________
# Buttons reactives ####
shiny::observeEvent((input$deg_test_btn), {
shiny::req(r$tcc)
if (is.null(r$fit)) {
r_dea$fit <- estimateDispersion(r$tcc)
r$fit <- r_dea$fit
if (golem::get_golem_options("server_version"))
loggit::loggit(
custom_log_lvl = TRUE,
log_lvl = r$session_id,
log_msg = "DEA"
)
}
shiny::req(r$fit,
input$dea_fdr,
input$reference,
input$perturbation)
if (input$reference == input$perturbation) {
shinyalert::shinyalert("You tried to compare the same conditions!
You may need some coffee...",
type = "error")
}
shiny::req(!input$reference == input$perturbation)
r_dea$tags <-
estimateDEGs(r$fit,
reference = input$reference,
perturbation = input$perturbation)
r_dea$top_tags <-
r_dea$tags$table[r_dea$tags$table$FDR < input$dea_fdr,]
r_dea$top_tags <-
r_dea$top_tags[abs(r_dea$top_tags$logFC) > input$dea_lfc,]
r_dea$DEGs <- r_dea$top_tags$genes
r_dea$ref <- input$reference
r_dea$trt <- input$perturbation
r$DEGs[[paste(r_dea$ref, r_dea$trt)]] <- r_dea$DEGs
r$top_tags[[paste(r_dea$ref, r_dea$trt)]] <- r_dea$top_tags
r_dea$go <- NULL
r_dea$lfc <- input$dea_lfc
r_dea$fdr <- input$dea_fdr
# --- Creating data for table display and download --- #
top <- r_dea$top_tags
top$Regulation <- ifelse(top$logFC > 0, "Up", "Down")
columns <- c("logFC", "logCPM", "FDR", "Regulation")
if (!is.null(r$gene_info)) {
columns <- c(colnames(r$gene_info), columns)
if (r$splicing_aware)
ids <- get_locus(rownames(top), unique = FALSE)
else
ids <- rownames(top)
top[, colnames(r$gene_info)] <-
r$gene_info[match(ids, rownames(r$gene_info)), ]
}
r_dea$gene_table <- top[, columns]
})
# ____________________________________________________________________________
# Summaries ####
output$disp_estimate_summary <- shiny::renderUI({
shiny::req(is.null(r$normalized_counts))
numberColor = "red"
number = "Normalisation needed"
header = ""
numberIcon = shiny::icon('times')
shinydashboardPlus::descriptionBlock(
number = number,
numberColor = numberColor,
numberIcon = numberIcon,
header = header,
rightBorder = FALSE
)
})
output$deg_test_summary <- shiny::renderUI({
if (is.null(r$normalized_counts)) {
numberColor = "red"
number = "Normalisation needed"
header = ""
numberIcon = shiny::icon('times')
}
else{
if (is.null(r_dea$top_tags)) {
numberColor = "orange"
number = "Tests can be performed"
header = ""
numberIcon = shiny::icon('times')
}
else{
numberColor = "olive"
number = "Done"
numberIcon =icon('check')
header = "See plots and tables for more details"
}
}
shinydashboardPlus::descriptionBlock(
number = number,
numberColor = numberColor,
numberIcon = numberIcon,
header = header,
rightBorder = FALSE
)
})
output$deg_number_summary <- shiny::renderUI({
shiny::req(r$top_tags, r_dea$ref, r_dea$trt)
shiny::req(r$top_tags[[paste(r_dea$ref, r_dea$trt)]])
tagList(
shiny::fluidRow(
shinydashboardPlus::descriptionBlock(
number = sum(r$top_tags[[paste(r_dea$ref, r_dea$trt)]]$logFC > 0),
numberColor = "olive",
numberIcon = shiny::icon('caret-up'),
header = "up regulated",
text = "genes",
rightBorder = TRUE
),
shinydashboardPlus::descriptionBlock(
number = sum(r$top_tags[[paste(r_dea$ref, r_dea$trt)]]$logFC < 0),
numberColor = "red",
numberIcon = shiny::icon('caret-down'),
header = "down-regulated",
text = "genes",
rightBorder = FALSE
)
)
)
})
# ____________________________________________________________________________
# Dl button ####
output$dl_bttns <- shiny::renderUI({
shiny::req(r$top_tags, r_dea$ref, r_dea$trt)
shiny::req(r$top_tags[[paste(r_dea$ref, r_dea$trt)]])
tagList(
shiny::fluidRow(col_12(
shinyWidgets::downloadBttn(
outputId = ns("download_table_csv"),
label = "Download result table as .tsv",
style = "material-flat",
color = "success"
)
)),
shiny::hr(),
shinyWidgets::downloadBttn(
ns("report"),
"Generate html report",
style = "material-flat",
color = "default"
)
)
})
output$download_table_csv <- shiny::downloadHandler(
filename = function() {
paste(paste0("DEGs_", r_dea$ref, "-", r_dea$trt, ".tsv"))
},
content = function(file) {
df <- r_dea$gene_table
df$Gene_ID <- rownames(r_dea$gene_table)
# if(stringr::str_detect(colnames(df), "label"))
# df$label <- stringr::str_replace(df$label, ';', '-')
write.table(#df[, !stringr::str_detect(colnames(df), "description")]
df,
file = file,
row.names = FALSE,
sep = '\t',
quote = FALSE
)
}
)
# ____________________________________________________________________________
# report ####
output$report <- shiny::downloadHandler(
# For PDF output, change this to "report.pdf"
filename = "DEA_report.html",
content = function(file) {
# Copy the report file to a temporary directory before processing it, in
# case we don't have write permissions to the current working dir (which
# can happen when deployed).
tempReport <- file.path(tempdir(), "DEA_report.Rmd")
tempImage <- file.path(tempdir(), "favicon.ico")
file.copy(
system.file("extdata", "DEA_report.Rmd", package = "DIANE"),
tempReport,
overwrite = TRUE
)
file.copy(system.file("extdata", "favicon.ico", package = "DIANE"),
tempImage,
overwrite = TRUE)
# Set up parameters to pass to Rmd document
params <- list(r_dea = r_dea, r = r)
# Knit the document, passing in the `params` list, and eval it in a
# child of the global environment (this isolates the code in the document
# from the code in this app).
rmarkdown::render(
tempReport,
output_file = file,
params = params,
envir = new.env(parent = globalenv())
)
}
)
### . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
### download GO ####
output$download_go_table <- shiny::downloadHandler(
filename = function() {
paste(
paste0(
"enriched_GOterms",
input$reference,
'_VS_',
input$perturbation,
'_',
input$go_type,
".csv"
)
)
},
content = function(file) {
write.csv(r_dea$go, file = file, quote = FALSE)
}
)
# ____________________________________________________________________________
# Result plots ####
output$table_ui <- shiny::renderUI({
if (is.null(r$normalized_counts)) {
shinydashboardPlus::descriptionBlock(
number = "Please normalize and filter raw data in normalization tab",
numberColor = "orange",
rightBorder = FALSE
)
}
else
DT::dataTableOutput(ns("deg_table"))
})
output$deg_table <- DT::renderDataTable({
shiny::req(r$top_tags, r_dea$ref, r_dea$trt, r_dea$gene_table)
shiny::req(r$top_tags[[paste(r_dea$ref, r_dea$trt)]])
table <- DT::datatable(r_dea$gene_table,
selection = "single",
option = list(scrollX = TRUE))
table <- DT::formatSignif(table,
columns = c("logFC", "logCPM", "FDR"),
digits = 4)
DT::formatStyle(table,
columns = c("Regulation"),
target = c("cell", "row"),
backgroundColor = DT::styleEqual(c("Up", "Down"),
c("#72F02466", c("#FF000035"))),
)
})
shiny::observeEvent(input$deg_table_rows_selected, {
showModal(
modalDialog(
plotOutput(ns("count_table_plot")),
size = "l",
easyClose = TRUE,
fade = TRUE
)
)
})
output$count_table_plot <- shiny::renderPlot({
DIANE::draw_expression_levels(log2(r$normalized_counts+2), genes = rownames(r_dea$top_tags[input$deg_table_rows_selected,]))
})
# ____________________________________________________________________________
# Venn ####
###TODO : changer le nom du fichier téléchargeable
###TODO : Empêcher l'utilisateur de faire des intersections qui n'ont pas de sens
###TODO : rendre la partie intersection plus intuitive DONE
###TODO : utiliser de beaux boutons graphiques pour les up/down/all. DONE (mais pas super)
###TODO : Trouver autre chose que FALSE DONE
###TODO : echelle de l'image ! (trouvé! changer simplement le "res"...)
###FIXME : Boutons du choix de la méthode de normalisation (awesomeRadio) qui foire sur la page normalisation... Si j'ajoute un bouton de même type quelque part ici ça remarche. En regardant, il manque une propriété (un petit padding) si j'ai pas un awesomeRadio (même inutile) dans cette partie du programme. Je ne comprends pas.
output$venn_lists_choice <- shiny::renderUI({
shiny::req(length(r$DEGs) > 1)
shinyWidgets::checkboxGroupButtons(
inputId = ns("venn_genes"),
label = "Please select between 2 and 4 lists of genes to show in the Venn diagram :",
choices = names(r$DEGs),
justified = TRUE,
checkIcon = list(yes = shiny::icon("ok",
lib = "glyphicon"))
)
})
output$venn_lists_choice_2 <- shiny::renderUI({
shiny::req(length(r$DEGs) > 1)
shiny::fluidRow(
###All the buttons containing the list of genes.
shiny::column(3,
shinyWidgets::pickerInput(
inputId = ns("venn_list_1"),
label = "Gene list 1",
choices = c("None" = FALSE, names(r$DEGs))
)),
shiny::column(3,
shinyWidgets::pickerInput(
inputId = ns("venn_list_2"),
label = "Gene list 2",
choices = c("None" = FALSE, names(r$DEGs))
)),
shiny::column(3,
shinyWidgets::pickerInput(
inputId = ns("venn_list_3"),
label = "Gene list 3",
choices = c("None" = FALSE, names(r$DEGs))
)),
shiny::column(3,
shinyWidgets::pickerInput(
inputId = ns("venn_list_4"),
label = "Gene list 4",
choices = c("None" = FALSE, names(r$DEGs))
)),
###All the buttons containg the "up / down" chocices.
shiny::column(3,
shinyWidgets::checkboxGroupButtons(
inputId = ns("up_down_button_venn_1"),
label = "Gene subset",
choices = c("Up", "Down"),
selected = c("Up", "Down"),
justified = TRUE,
size = "sm",
checkIcon = list(yes = icon("ok",
lib = "glyphicon"))
)
),
shiny::column(3,
shinyWidgets::checkboxGroupButtons(
inputId = ns("up_down_button_venn_2"),
label = "Gene subset",
choices = c("Up", "Down"),
selected = c("Up", "Down"),
justified = TRUE,
size = "sm",
checkIcon = list(yes = icon("ok",
lib = "glyphicon"))
)
),
shiny::column(3,
shinyWidgets::checkboxGroupButtons(
inputId = ns("up_down_button_venn_3"),
label = "Gene subset",
choices = c("Up", "Down"),
selected = c("Up", "Down"),
justified = TRUE,
size = "sm",
checkIcon = list(yes = icon("ok",
lib = "glyphicon"))
)
),
shiny::column(3,
shinyWidgets::checkboxGroupButtons(
inputId = ns("up_down_button_venn_4"),
label = "Gene subset",
choices = c("Up", "Down"),
selected = c("Up", "Down"),
justified = TRUE,
size = "sm",
checkIcon = list(yes = icon("ok",
lib = "glyphicon"))
)
),
)
})
###List of input gene list for venn diagram. Based on what user input.
venn_list <- shiny::reactive({
shiny::req(sum( ###Check that at least two list have a value != FALSE
c(
input$venn_list_1,
input$venn_list_2,
input$venn_list_3,
input$venn_list_4
) != FALSE
) >= 2)
venn_list <- list()
for (comp in 1:4) {
###We test the 4 input DE list fields.
if (!isFALSE(input[[paste0("venn_list_", comp)]])) {
###If the gene list is set to false, we just go to the next
selected_comparison <-
input[[paste0("venn_list_", comp)]] ###Extraction of the value.
if(all(input[[paste0("up_down_button_venn_", comp)]] == "")){
venn_list[[selected_comparison]] <-
r$top_tags[[selected_comparison]]$genes
} else if (all(input[[paste0("up_down_button_venn_", comp)]] == "Up")) {
#Only up is selected
venn_list[[paste0(selected_comparison, " up")]] <-
r$top_tags[[selected_comparison]][r$top_tags[[selected_comparison]]$logFC > 0 , "genes"]
} else if (all(input[[paste0("up_down_button_venn_", comp)]] == "Down")) {
#only down is selected
venn_list[[paste0(selected_comparison, " down")]] <-
r$top_tags[[selected_comparison]][r$top_tags[[selected_comparison]]$logFC < 0 , "genes"]
} else {
#Up and down are selected.
venn_list[[selected_comparison]] <-
r$top_tags[[selected_comparison]]$genes
}
}
}
# print(head(venn_list))
venn_list
})
###Venn diagram plot. The res parameter as a direct impact on text size.
output$venn <- shiny::renderPlot({
shiny::req(venn_list)
validate(
need(length(names(venn_list())) > 1, "Please specify between two and four genes list.")
)
draw_venn(venn_list())
}, res = 100)
output$venn_spec_comp_choice <- shiny::renderUI({
shiny::req(venn_list())
tagList(
shiny::selectInput(
ns("venn_spec_comp"),
label = "Genes specific to a comparison :",
choices = names(venn_list())[!FALSE],
)
)
})
###Part with download intersection.
output$venn_spec_comp_choice_2 <- shiny::renderUI({
shiny::req(venn_list())
shiny::req(length(names(venn_list())) > 1)
tagList(
shiny::h3("Download subsets of genes"),
tags$table(style = "width: 100%; text-align: center;",
tags$tr(
tags$td(
style = "width: 30%; ",
shiny::selectInput(
ns("venn_genes_intersection"),
label = "Genes present in the intersection of :",
choices = names(venn_list())[!FALSE],
multiple = TRUE
)
),
tags$td(style = "width: 40%; padding: 0 5px 0 5px;",
h4(
" Which are also absent from the following lists "
)),
tags$td(
style = "width: 30%",
shiny::selectInput(
ns("venn_genes_union_absent"),
label = "Genes absent in lists :",
choices = names(venn_list())[!FALSE],
multiple = TRUE
)
),
)),
)
})
output$download_specific_venn_2 <- shiny::downloadHandler(
filename = function() {
if (!is.null(input$venn_genes_union_absent)) {
###Nom pas encore très sexy :'(
stringr::str_replace_all(paste(
paste0(
"Venn_specific_to ",
paste0(input$venn_genes_intersection, collapse = "_and_")
,
"_NOT_",
paste0(input$venn_genes_union_absent, collapse = "_and_"),
".csv"
),
collapse = "_"
),
pattern = " ",
replacement = "_")
} else {
stringr::str_replace_all(paste(paste0(
"Venn_specific_to ",
paste0(input$venn_genes_intersection, collapse = "_and_")
)),
pattern = " ",
replacement = "_")
}
},
content = function(file) {
#if (!any(input$venn_genes_intersection == input$venn_genes_union_absent)) {
write.table(
###Intersection of the list on the left - union of the list of the rigth.
setdiff(Reduce(intersect, venn_list()[input$venn_genes_intersection]),
Reduce(union, venn_list()[input$venn_genes_union_absent])),
file = file,
row.names = FALSE,
sep = ';',
quote = FALSE,
col.names = FALSE
)
#} #else {
#shinyalert::shinyalert( ###Should just disable the button instead of this, here.
# "You cannot select identical conditions in the gene,
# list to include and in the gene list to remove",
# type = "error"
#)
# }
}
)
output$venn_spec_comp_bttn_2 <- shiny::renderUI({
shiny::req(venn_list())
shiny::req(length(names(venn_list())) > 1)
shiny::validate(
shiny::need(
!any(
input$venn_genes_intersection %in% input$venn_genes_union_absent
),
"You cannot select identical conditions in the gene list to include and in the gene list to remove"
),
shiny::need(
input$venn_genes_intersection != "",
"You must select at least one gene list to include."
)
)
tagList(
shinyWidgets::downloadBttn(
outputId = ns("download_specific_venn_2"),
label = paste(
"Download genes specific to the",
paste0(input$venn_genes_intersection, collapse = "/"),
"list"
),
style = "material-flat",
color = "success"
)
)
})
# ____________________________________________________________________________
# heatmap ####
output$heatmap_conditions_choice <- shiny::renderUI({
shiny::req(r$conditions)
shiny::req(r$top_tags, r_dea$ref, r_dea$trt)
shiny::req(r$top_tags[[paste(r_dea$ref, r_dea$trt)]])
shinyWidgets::checkboxGroupButtons(
inputId = ns("conds_heatmap"),
label = "Conditions :",
choices = unique(r$conditions),
selected = c(r_dea$ref, r_dea$trt),
justified = TRUE,
checkIcon = list(yes = shiny::icon("ok",
lib = "glyphicon"))
)
})
output$heatmap <- shiny::renderPlot({
shiny::req(input$conds_heatmap, r_dea$DEGs, r$normalized_counts)
shiny::req(r$top_tags, r_dea$ref, r_dea$trt)
draw_heatmap(
data = r$normalized_counts,
subset = r_dea$DEGs,
log = TRUE,
conditions = input$conds_heatmap,
profiles = TRUE,
title = paste0(
"LogCount of differentially expressed genes between : ",
paste0(r_dea$ref, " and ", r_dea$trt)
)
)
})
output$ma_vulcano <- shiny::renderPlot({
shiny::req(r$top_tags, r_dea$DEGs)
shiny::req(r$top_tags[[paste(r_dea$ref, r_dea$trt)]])
draw_DEGs(
tags = r_dea$tags,
fdr = input$dea_fdr,
lfc = input$dea_lfc,
MA = input$MA_vulcano_switch
)
})
# ____________________________________________________________________________
# GO enrich ####
shiny::observeEvent((input$go_enrich_btn), {
shiny::req(r$normalized_counts)
shiny::req(r_dea)
shiny::req(r_dea$top_tags)
if (r$organism == "Other") {
if (is.null(r$custom_go)) {
if (!is.null(input$go_data)) {
pathName = input$go_data$datapath
d <- read.csv(
sep = input$sep,
file = pathName,
header = TRUE,
stringsAsFactors = FALSE
)
r$custom_go <- d
}
else{
shinyalert::shinyalert(
"Please input Gene to GO term file. ",
"Only some main model organisms are supported,
but you can input your own gene - GO terms matching.",
type = "error"
)
}
}
shiny::req(r$custom_go)
if (ncol(r$custom_go) != 2) {
r$custom_go <- NULL
shinyalert::shinyalert(
"Invalid file",
"It must contain two columns as described.
Did you correctly set the separator?",
type = "error"
)
}
shiny::req(ncol(r$custom_go) == 2)
GOs <- r$custom_go
if(input$up_down_go_radio == "All")
genes <- r_dea$top_tags$genes
if(input$up_down_go_radio == "Up-regulated")
genes <- r_dea$top_tags[r_dea$top_tags$logFC > 0,]$genes
if(input$up_down_go_radio == "Down-regulated")
genes <- r_dea$top_tags[r_dea$top_tags$logFC < 0,]$genes
universe <-
intersect(rownames(r$normalized_counts), GOs[, 1])
if (length(universe) == 0) {
r$custom_go <- NULL
shinyalert::shinyalert(
"Invalid first column",
"The first column did not match any gene ID from
differential expression analysis",
type = "error"
)
}
shiny::req(length(universe) > length(genes))
r_dea$go <-
enrich_go_custom(genes, universe, GOs, GO_type = input$go_type)
################# known organisms
} else{
if(input$up_down_go_radio == "All")
genes <- r_dea$top_tags$genes
if(input$up_down_go_radio == "Up-regulated")
genes <- r_dea$top_tags[r_dea$top_tags$logFC > 0,]$genes
if(input$up_down_go_radio == "Down-regulated")
genes <- r_dea$top_tags[r_dea$top_tags$logFC < 0,]$genes
background <- rownames(r$normalized_counts)
if (r$splicing_aware) {
genes <- get_locus(genes)
background <- get_locus(background)
}
if (r$organism == "Lupinus albus") {
GOs <- DIANE:::lupine$go_list
universe <- intersect(background, GOs[, 1])
r_dea$go <- enrich_go_custom(genes, universe, GOs,
GO_type = input$go_type)
}
else if (stringr::str_detect(r$organism, "Oryza")) {
data("go_matchings", package = "DIANE")
GOs <- go_matchings[[r$organism]]
universe <- intersect(background, GOs[, 1])
r_dea$go <- enrich_go_custom(genes, universe, GOs,
GO_type = input$go_type)
}
else{
if (r$organism == "Arabidopsis thaliana") {
genes <- convert_from_agi(genes)
background <- convert_from_agi(background)
org = org.At.tair.db::org.At.tair.db
}
if (r$organism == "Homo sapiens") {
genes <- convert_from_ensembl(genes)
background <- convert_from_ensembl(background)
org = org.Hs.eg.db::org.Hs.eg.db
}
if (r$organism == "Mus musculus") {
genes <- convert_from_ensembl_mus(genes)
background <- convert_from_ensembl_mus(background)
org = org.Mm.eg.db::org.Mm.eg.db
}
if (r$organism == "Drosophilia melanogaster") {
genes <- convert_from_ensembl_dm(genes)
background <- convert_from_ensembl_dm(background)
org = org.Dm.eg.db::org.Dm.eg.db
}
if (r$organism == "Caenorhabditis elegans") {
genes <- convert_from_ensembl_ce(genes)
background <- convert_from_ensembl_ce(background)
org = org.Ce.eg.db::org.Ce.eg.db
}
if (r$organism == "Escherichia coli") {
genes <- convert_from_ensembl_eck12(genes)
background <- convert_from_ensembl_eck12(background)
org = org.EcK12.eg.db::org.EcK12.eg.db
}
# TODO add check if it is entrez with regular expression here
shiny::req(length(genes) > 0, length(background) > 0)
r_dea$go <-
enrich_go(genes,
background,
org = org,
GO_type = input$go_type)
}
}
if (golem::get_golem_options("server_version"))
loggit::loggit(
custom_log_lvl = TRUE,
log_lvl = r$session_id,
log_msg = "GO enrichment DEA"
)
})
# ____________________________________________________________________________
# go results ####
output$go_table <- DT::renderDataTable({
shiny::req(r_dea$go)
r_dea$go[, c("Description", "GeneRatio", "BgRatio", "p.adjust")]
})
output$max_go_choice <- shiny::renderUI({
shiny::req(r_dea$go)
shiny::req(input$draw_go == "Dot plot")
shiny::numericInput(
ns("n_go_terms"),
label = "Top number of GO terms to plot :",
min = 1,
value = dim(r_dea$go)[1]
)
})
output$go_plot <- plotly::renderPlotly({
shiny::req(r_dea$go)
max = ifelse(is.na(input$n_go_terms),
dim(r_dea$go)[1],
input$n_go_terms)
draw_enrich_go(r_dea$go, max_go = max)
})
output$go_map_plot <- shiny::renderPlot({
shiny::req(r_dea$go)
draw_enrich_go_map(r_dea$go)
})
output$go_results <- shiny::renderUI({
shiny::req(r_dea$go)
if (nrow(r_dea$go) == 0) {
shinyalert::shinyalert(
"No enriched GO terms were found",
"It can happen if input gene list is not big enough",
type = "error"
)
}
shiny::req(nrow(r_dea$go) > 0)
if (input$draw_go == "Data table") {
tagList(
DT::dataTableOutput(ns("go_table")),
shinyWidgets::downloadBttn(
outputId = ns("download_go_table"),
label = "Download enriched GO term as a csv table",
style = "material-flat",
color = "success"
)
)
}
else{
if (input$draw_go == "Enrichment map") {
shiny::plotOutput(ns("go_map_plot"), height = "800px")
}
else
plotly::plotlyOutput(ns("go_plot"), height = "800px")
}
})
}
## To be copied in the UI
# mod_differential_expression_analysis_ui("differential_expression_analysis_ui_1")
## To be copied in the server
# callModule(mod_differential_expression_analysis_server, "differential_expression_analysis_ui_1")
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.