R/RccMetadata.R

Defines functions .validPositiveNumber .validNonNegativeNumber .validNonNegativeInteger .allZero .allFALSE .allTRUE .allNA .validRccSchema

.rccMetadata <- list(schema = list(Header = data.frame(labelDescription = c("The version of the file", 
    "The version of the software used to create the file", "The generation of instrument used to create the file"), 
    minVersion = numeric_version(c("1.7", "1.7", "2.0")), row.names = c("FileVersion", 
        "SoftwareVersion", "SystemType"), stringsAsFactors = FALSE), Sample_Attributes = data.frame(labelDescription = c("The sample ID", 
    "The owner of the sample", "Comments about the sample", "The date of the sample", "The filename without the \"*.RLF\" extension", 
    "The filename without the \"*.APF\" extension", "The assay type that the user associated with this codeset"), 
    minVersion = numeric_version(c(rep("1.7", 6L), "2.0")), row.names = c("ID", "Owner", 
        "Comments", "Date", "GeneRLF", "SystemAPF", "AssayType"), stringsAsFactors = FALSE), 
    Lane_Attributes = data.frame(labelDescription = c("The lane ID (1-12)", "The specified FOV count", 
        "The number of FOV counted", "The ID of the scanner used", "The stage position of the lane's cartridge (1-6)", 
        "The density of spots in the lane", "The ID of the cartridge", "The barcode of the cartridge"), 
        minVersion = numeric_version(c(rep("1.7", 8L))), row.names = c("ID", "FovCount", 
            "FovCounted", "ScannerID", "StagePosition", "BindingDensity", "CartridgeID", 
            "CartridgeBarcode"), stringsAsFactors = FALSE), Code_Summary = data.frame(labelDescription = c(NA_character_, 
        NA_character_, NA_character_, NA_character_), minVersion = numeric_version(c(rep("1.7", 
        4L))), row.names = c("CodeClass", "Name", "Accession", "Count"), stringsAsFactors = FALSE), 
    Messages = "character"))
.rccMetadata[["protocolData"]] <- do.call(rbind, unname(head(.rccMetadata[["schema"]], 
    3L)))[, "labelDescription", drop = FALSE]
.rccMetadata[["protocolData"]] <- .rccMetadata[["protocolData"]][rownames(.rccMetadata[["protocolData"]]) != 
    "GeneRLF", , drop = FALSE]
rownames(.rccMetadata[["protocolData"]])[rownames(.rccMetadata[["protocolData"]]) == "ID"] <- "SampleID"
rownames(.rccMetadata[["protocolData"]])[rownames(.rccMetadata[["protocolData"]]) == "Owner"] <- "SampleOwner"
rownames(.rccMetadata[["protocolData"]])[rownames(.rccMetadata[["protocolData"]]) == "Comments"] <- "SampleComments"
rownames(.rccMetadata[["protocolData"]])[rownames(.rccMetadata[["protocolData"]]) == "Date"] <- "SampleDate"
rownames(.rccMetadata[["protocolData"]])[rownames(.rccMetadata[["protocolData"]]) == "ID1"] <- "LaneID"
.codeClassMetadata <- c("CodeClass,IsControl,Analyte", "Endogenous,FALSE,gx|cnv|fusion", 
    "Housekeeping,TRUE,gx|fusion", "Positive,TRUE,general", "Negative,TRUE,general", "Binding,TRUE,general", 
    "Purification,TRUE,general", "Reserved,TRUE,general", "SNV_INPUT_CTL,TRUE,SNV", "SNV_NEG,TRUE,SNV", 
    "SNV_POS,TRUE,SNV", "SNV_UDG_CTL,TRUE,SNV", "SNV_PCR_CTL,TRUE,SNV", "SNV_REF,FALSE,SNV", 
    "SNV_VAR,FALSE,SNV", "PROTEIN,FALSE,protein", "PROTEIN_NEG,TRUE,protein", "PROTEIN_CELL_NORM,TRUE,protein", 
    "Restriction Site,TRUE,CNV", "Invariant,TRUE,CNV")
.codeClassMetadata <- read.csv(textConnection(paste0(.codeClassMetadata, collapse = "\n")), 
    colClasses = c("character", "logical", "character"), stringsAsFactors = FALSE)
.validRccSchema <- function(x, fileVersion, section = c("Header", "Sample_Attributes", 
    "Lane_Attributes", "Code_Summary")) {
    section <- match.arg(section)
    schema <- .rccMetadata[["schema"]][[section]]
    expectedNames <- row.names(schema)[schema[, "minVersion"] <= fileVersion]
    if (identical(colnames(x), expectedNames)) 
        TRUE
    else sprintf("<%s> section must contain %s", section, paste0("\"", expectedNames, "\"", 
        collapse = ", "))
}
.allNA <- function(x) {
    all(is.na(x))
}
.allTRUE <- function(x) {
    is.logical(x) && !anyNA(x) && all(x)
}
.allFALSE <- function(x) {
    is.logical(x) && !anyNA(x) && !any(x)
}
.allZero <- function(x) {
    is.numeric(x) && !anyNA(x) && identical(range(x), c(0, 0))
}
.validNonNegativeInteger <- function(x) {
    is.integer(x) && !anyNA(x) && min(x) >= 0L
}
.validNonNegativeNumber <- function(x) {
    is.numeric(x) && !anyNA(x) && min(x) >= 0
}
.validPositiveNumber <- function(x) {
    is.numeric(x) && !anyNA(x) && min(x) > 0
}
Nanostring-Biostats/NanoStringNCTools documentation built on Dec. 18, 2024, 1:24 a.m.