#' An example Seurat object
#'
#' @return a Seurat object populated with data
#' from the [pbmc_matrix_small] scRNA-seq dataset, additionally
#' annotated with cluster assignments.
#'
#' @importFrom SeuratObject CreateSeuratObject CreateDimReducObject VariableFeatures
#' @export
so_pbmc <- function() {
x <- pbmc_example_data()
so <- SeuratObject::CreateSeuratObject(x$mat,
meta.data = x$metadata
)
umap_dr <- SeuratObject::CreateDimReducObject(
embeddings = x$umap,
key = "umap_",
assay = "RNA"
)
if (is_seurat_v5()) {
so <- SeuratObject::SetAssayData(
so,
"data",
SeuratObject::LayerData(so, layer = "counts")
)
} else {
so <- SeuratObject::SetAssayData(
so,
"data",
SeuratObject::GetAssayData(so, slot = "counts")
)
}
so[["umap"]] <- umap_dr
SeuratObject::VariableFeatures(so) <- x$vargenes
so
}
#' An example SingleCellExperiment object
#'
#' @return a SingleCellExperiment object populated with data
#' from the [pbmc_matrix_small] scRNA-seq dataset, additionally
#' annotated with cluster assignments.
#'
#' @export
sce_pbmc <- function() {
x <- pbmc_example_data()
cols_to_keep <- c(
"orig.ident",
"nCount_RNA",
"nFeature_RNA",
"percent.mt",
"RNA_snn_res.0.5",
"classified"
)
md <- x$metadata[, cols_to_keep]
# rename to more sce-like names
colnames(md) <- c(
"cell_source",
"sum",
"detected",
"subsets_Mito_percent",
"clusters",
"cell_type"
)
SingleCellExperiment::SingleCellExperiment(
list(
counts = x$mat,
logcounts = x$mat
),
colData = md,
reducedDims = list(
UMAP = x$umap
)
)
}
pbmc_example_data <- function() {
mat <- clustifyr::pbmc_matrix_small
md <- clustifyr::pbmc_meta
umap_cols <- c("UMAP_1", "UMAP_2")
umap <- as.matrix(md[, umap_cols])
md <- md[, setdiff(colnames(md), umap_cols)]
vargenes <- clustifyr::pbmc_vargenes
list(
mat = mat,
metadata = md,
umap = umap,
vargenes = vargenes
)
}
#' Function to access object data
#' @return expression matrix, with genes as row names,
#' and cell types as column names
#' @export
object_data <- function(object, ...) {
UseMethod("object_data", object)
}
#' @rdname object_data
#' @param object SingleCellExperiment or Seurat object
#' @param slot data to access
#' @param n_genes number of genes limit for Seurat variable genes, by default 1000,
#' set to 0 to use all variable genes (generally not recommended)
#' @param ... additional arguments
#' @examples
#' so <- so_pbmc()
#' mat <- object_data(
#' object = so,
#' slot = "data"
#' )
#' mat[1:3, 1:3]
#' @export
object_data.Seurat <- function(
object,
slot,
n_genes = 1000,
...) {
if (slot == "data") {
temp <- get_seurat_matrix(object, ...)
return(temp)
} else if (slot == "meta.data") {
return(object@meta.data)
} else if (slot == "var.genes") {
vars <- SeuratObject::VariableFeatures(object)
if (is.null(vars) || length(vars) <= 1) {
message("variable genes not found, please manually specify with query_genes argument")
}
if ((length(vars) > n_genes) & (n_genes > 0)) {
vars <- vars[seq_len(n_genes)]
}
return(vars)
} else {
stop(slot, " access method not implemented")
}
}
#' @importFrom utils packageVersion
is_seurat_v5 <- function() {
utils::packageVersion("SeuratObject") >= "5.0.0"
}
extract_v5_matrix <- function(x, ...) {
ob_layers <- SeuratObject::Layers(x)
if ("data" %in% ob_layers) {
res <- SeuratObject::LayerData(x, layer = "data", ...)
} else if ("counts" %in% ob_layers) {
message("Unable to find 'data' layer, using 'count' layer instead")
res <- SeuratObject::LayerData(x, layer = "counts", ...)
} else {
da <- DefaultAssay(x)
stop(
"\nUnable to find data or count layer in ", da, " Assay of SeuratObject\n",
"Extracting data from V5 objects with multiple count\n",
"or data layers is not supported"
)
}
res
}
extract_v4_matrix <- function(x) {
res <- SeuratObject::GetAssayData(x, layer = "data")
if (length(res) == 0) {
message("Unable to find 'data' slot, using 'count' slot instead")
res <- SeuratObject::GetAssayData(x, layer = "count")
}
res
}
get_seurat_matrix <- function(x, warn = TRUE) {
ob_assay <- SeuratObject::DefaultAssay(x)
if (warn && ob_assay != "RNA") {
warning(
"Default assay of input Seurat object is ", ob_assay, "\n",
"Data will be used from this assay rather than RNA"
)
}
if (is_seurat_v5()) {
res <- extract_v5_matrix(x)
} else {
res <- extract_v4_matrix(x)
}
res
}
#' @rdname object_data
#' @param object object after tsne or umap projections
#' and clustering
#' @param slot data to access
#' @param ... additional arguments
#' @importFrom SingleCellExperiment logcounts colData
#' @examples
#' sce <- sce_pbmc()
#' mat <- object_data(
#' object = sce,
#' slot = "data"
#' )
#' mat[1:3, 1:3]
#' @export
object_data.SingleCellExperiment <- function(
object,
slot,
...) {
if (slot == "data") {
return(SingleCellExperiment::logcounts(object))
} else if (slot == "meta.data") {
return(as.data.frame(SingleCellExperiment::colData(object)))
} else {
stop(slot, " access method not implemented")
}
}
#' Function to write metadata to object
#' @return object with newly inserted metadata columns
#' @export
write_meta <- function(object, ...) {
UseMethod("write_meta", object)
}
#' @rdname write_meta
#' @param object object after tsne or umap projections
#' and clustering
#' @param meta new metadata dataframe
#' @param ... additional arguments
#' @examples
#' so <- so_pbmc()
#' obj <- write_meta(
#' object = so,
#' meta = seurat_meta(so)
#' )
#' @export
write_meta.Seurat <- function(
object,
meta,
...) {
object_new <- object
object_new@meta.data <- meta
object_new
}
#' @rdname write_meta
#' @param object object after tsne or umap projections
#' and clustering
#' @param meta new metadata dataframe
#' @param ... additional arguments
#' @importFrom SingleCellExperiment colData
#' @importFrom S4Vectors DataFrame
#' @importFrom SummarizedExperiment colData<-
#' @examples
#' sce <- sce_pbmc()
#' obj <- write_meta(
#' object = sce,
#' meta = object_data(sce, "meta.data")
#' )
#' @export
write_meta.SingleCellExperiment <- function(
object,
meta,
...) {
colData(object) <- S4Vectors::DataFrame(meta)
object
}
#' Function to convert labelled seurat object to avg expression matrix
#' @return reference expression matrix, with genes as row names,
#' and cell types as column names
#' @examples
#' so <- so_pbmc()
#' ref <- seurat_ref(so, cluster_col = "seurat_clusters")
#' @export
seurat_ref <- function(seurat_object, ...) {
UseMethod("seurat_ref", seurat_object)
}
#' @rdname seurat_ref
#' @param seurat_object seurat_object after tsne or umap projections
#' and clustering
#' @param cluster_col column name where classified cluster names
#' are stored in seurat meta data, cannot be "rn"
#' @param var_genes_only whether to keep only var_genes in the final
#' matrix output, could also look up genes used for PCA
#' @param assay_name any additional assay data, such as ADT, to include.
#' If more than 1, pass a vector of names
#' @param method whether to take mean (default) or median
#' @param subclusterpower whether to get multiple averages per
#' original cluster
#' @param if_log input data is natural log,
#' averaging will be done on unlogged data
#' @param ... additional arguments
#' @export
seurat_ref.Seurat <- function(
seurat_object,
cluster_col = "classified",
var_genes_only = FALSE,
assay_name = NULL,
method = "mean",
subclusterpower = 0,
if_log = TRUE,
...) {
if (is(seurat_object, "Seurat")) {
temp_mat <- object_data(seurat_object, "data")
if (is.logical(var_genes_only) && var_genes_only) {
temp_mat <- temp_mat[object_data(seurat_object, "var.genes"), ]
} else if (var_genes_only == "PCA") {
temp_mat <-
temp_mat[rownames(object_data(seurat_object, "pca")), ]
}
if (!is.null(assay_name)) {
og_assay <- SeuratObject::DefaultAssay(seurat_object)
assay_name <- setdiff(assay_name, og_assay)
temp_mat <- temp_mat[0, ]
for (element in assay_name) {
SeuratObject::DefaultAssay(seurat_object) <- element
temp_mat2 <- object_data(seurat_object, "data", warn = FALSE)
temp_mat <- rbind(temp_mat, as.matrix(temp_mat2))
}
SeuratObject::DefaultAssay(seurat_object) <- og_assay
}
} else {
stop("Input is not a compatible Seurat object")
}
temp_res <- average_clusters(
temp_mat,
object_data(seurat_object, "meta.data"),
cluster_col = cluster_col,
method = method,
subclusterpower = subclusterpower,
if_log = if_log
)
temp_res
}
#' Function to convert labelled seurat object to fully prepared metadata
#' @return dataframe of metadata, including dimension reduction plotting info
#' @examples
#' so <- so_pbmc()
#' m <- seurat_meta(so)
#' @export
seurat_meta <- function(seurat_object, ...) {
UseMethod("seurat_meta", seurat_object)
}
#' @rdname seurat_meta
#' @param seurat_object seurat_object after tsne or
#' umap projections and clustering
#' @param dr dimension reduction method
#' @param ... additional arguments
#' @export
seurat_meta.Seurat <- function(
seurat_object,
dr = "umap",
...) {
dr2 <- dr
mdata <- object_data(seurat_object, "meta.data")
temp_col_id <- get_unique_column(mdata, "rn")
temp_dr <-
tryCatch(
as.data.frame(seurat_object@reductions[[dr2]]@cell.embeddings),
error = function(e) {
message("cannot find dr info")
return(NA)
}
)
if (!is.data.frame(temp_dr)) {
return(mdata)
} else {
temp_dr <- tibble::rownames_to_column(temp_dr, temp_col_id)
temp_meta <- tibble::rownames_to_column(mdata, temp_col_id)
temp <- dplyr::left_join(temp_meta, temp_dr, by = temp_col_id)
if (tibble::has_rownames(temp)) {
temp <- tibble::remove_rownames(temp)
}
return(tibble::column_to_rownames(temp, temp_col_id))
}
}
#' Function to convert labelled object to avg expression matrix
#' @return reference expression matrix, with genes as row names,
#' and cell types as column names
#' @export
object_ref <- function(input, ...) {
UseMethod("object_ref", input)
}
#' @rdname object_ref
#' @param input object after tsne or umap projections and clustering
#' @param cluster_col column name where classified cluster names
#' are stored in seurat meta data, cannot be "rn"
#' @param var_genes_only whether to keep only var.genes in the
#' final matrix output, could also look up genes used for PCA
#' @param assay_name any additional assay data, such as ADT, to include.
#' If more than 1, pass a vector of names
#' @param method whether to take mean (default) or median
#' @param lookuptable if not supplied, will look
#' in built-in table for object parsing
#' @param if_log input data is natural log,
#' averaging will be done on unlogged data
#' @param ... additional arguments
#' @examples
#' so <- so_pbmc()
#' object_ref(
#' so,
#' cluster_col = "seurat_clusters"
#' )
#' @export
object_ref.default <- function(
input,
cluster_col = NULL,
var_genes_only = FALSE,
assay_name = NULL,
method = "mean",
lookuptable = NULL,
if_log = TRUE,
...) {
if (!is(input, "seurat")) {
input_original <- input
temp <- parse_loc_object(
input,
type = class(input),
expr_loc = NULL,
meta_loc = NULL,
var_loc = NULL,
cluster_col = cluster_col,
lookuptable = lookuptable
)
if (!(is.null(temp[["expr"]]))) {
message("recognized object type - ", class(input))
}
input <- temp[["expr"]]
metadata <- temp[["meta"]]
query_genes <- temp[["var"]]
if (is.null(cluster_col)) {
cluster_col <- temp[["col"]]
}
}
temp_mat <- input
if (is.logical(var_genes_only) && var_genes_only) {
temp_mat <- temp_mat[query_genes, ]
}
temp_res <- average_clusters(
temp_mat,
metadata,
cluster_col = cluster_col,
method = method,
if_log = if_log
)
temp_res
}
#' @rdname object_ref
#' @export
object_ref.Seurat <- function(
input,
cluster_col = NULL,
var_genes_only = FALSE,
assay_name = NULL,
method = "mean",
lookuptable = NULL,
if_log = TRUE,
...) {
temp_mat <- object_data(input, "data")
metadata <- object_data(input, "meta.data")
query_genes <- object_data(input, "var.genes")
if (is.null(cluster_col)) {
message("please indicate metadata column containing cell identities")
}
if (is.logical(var_genes_only) && var_genes_only) {
temp_mat <- temp_mat[query_genes, ]
}
temp_res <- average_clusters(
temp_mat,
metadata,
cluster_col = cluster_col,
method = method,
if_log = if_log
)
temp_res
}
#' @rdname object_ref
#' @export
object_ref.SingleCellExperiment <- function(
input,
cluster_col = NULL,
var_genes_only = FALSE,
assay_name = NULL,
method = "mean",
lookuptable = NULL,
if_log = TRUE,
...) {
temp_mat <- object_data(input, "data")
metadata <- object_data(input, "meta.data")
if (is.null(cluster_col)) {
message("please indicate metadata column containing cell identities")
}
temp_res <- average_clusters(
temp_mat,
metadata,
cluster_col = cluster_col,
method = method,
if_log = if_log
)
temp_res
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.