#' THIS FUNCTION FOR USE WHEN RUNNING ALTRE ON MACOS/LINUX ONLY!
#' Generates count data for regulatory regions.
#'
#' Counts the number of reads in each regulatory region for each sample type --
#' read count is derived from user-input BAM files, and regions of interest
#' are supplied in a GRanges object, ideally output of combineAnnotatePeaks.
#' The function getCounts generates count data using
#' the featureCounts function from the R package Rsubreads, which is the fastest
#' way available on R to count. The getCountsFast function CANNOT be used when
#' running ALTRE on a Windows computer. Windows computers must use the function
#' getCounts (also available in the ALTRE package), which is significantly
#' slower, but ultimately will give the exact same results. For high-thoughput
#' experiments (many samples need to be analyzed), it is highly suggested that
#' a non-Windows computer is used (MacOS/Linux).
#'
#'
#' @param annotpeaks list output from combineAnnotatePeaks() function
#' @param sampleinfo dataframe as returned from loadCSVFile() function
#' @param reference name of sample type to be
#' considered 'reference' in DESeq2 analysis
#' @param singleEnd whether input data is single-end (default is TRUE)
#' @param chrom optional, only chromosome chrom will be evaluated
#'
#' @return List containing three items:
#' (1) DESeqDataSet: contains count information for all replicates of all samples
#' (2) Matrix: contains number of TSS-distal and TSS-proximal
#' before and after filtering (if applicable)
#' (3) Data frame for creating a density plot (use function plotGetCounts()
#'
#'
#' @examples
#' \dontrun{
#' csvfile <- loadCSVFile("DNaseEncodeExample.csv")
#' samplePeaks <- loadBedFiles(csvfile)
#' consensusPeaks <- getConsensusPeaks(samplepeaks = samplePeaks, minreps = 2)
#' TSSannot <- getTSS()
#' consensusPeaksAnnotated <- combineAnnotatePeaks(conspeaks = consensusPeaks,
#' TSS = TSSannot,
#' merge = TRUE,
#' regionspecific = TRUE,
#' distancefromTSSdist = 1500,
#' distancefromTSSprox = 1000)
#' consensusPeaksCounts <- getCountsFast(annotpeaks = consensusPeaksAnnotated,
#' sampleinfo = csvfile,
#' reference = 'SAEC',
#' chrom = 'chr21')
#' }
#' @export
getCountsFast <- function(annotpeaks,
sampleinfo,
reference,
singleEnd = TRUE,
chrom = NULL) {
if (!requireNamespace("Rsubread", quietly = TRUE)) {
stop("The Rsubread package is required for this function to work.
Rsubread is only available for computers running MacOS or Linux.
If you are running MacOS or Linux please install Rsubread:
https://bioconductor.org/packages/release/bioc/html/Rsubread.html.
If you are using a Windows computer please use the function getCounts
(also available in the ALTRE R package) in place of the current function.
The results of the analysis will be exactly the same, but the processing
time may be much slower. If you plan to analyze a very large number of samples
it is highly suggested that a non-Windows computer is used (MacOS/Linux).",
call. = FALSE)
}
# datapaths <- paste(sampleinfo$datapath, sampleinfo$bamfiles, sep = "/")
datapaths <- file.path(sampleinfo$datapath, sampleinfo$bamfiles)
#subset by chromosome if necessary
if (is.null(chrom) == FALSE) {
regions <- annotpeaks[[1]][seqnames(annotpeaks[[1]]) == chrom,]
} else {
regions <- annotpeaks[[1]]
}
# create correct format (SAF) in order to use featureCounts
regionsdataframe = as.data.frame(regions)
SAFformat = as.data.frame(paste(regionsdataframe[,1], regionsdataframe[,2], regionsdataframe[,3], sep = ":"))
SAFformat = cbind(SAFformat, regionsdataframe[,c(1:3)])
SAFformat$Strand = "-"
colnames(SAFformat) = c("GeneID", "Chr", "Start", "End", "Strand")
sampleinfo$bamfiles
results = Rsubread::featureCounts(files = datapaths, annot.ext = SAFformat, isPairedEnd = !singleEnd)
counts = results$counts
colnames(counts) = sampleinfo$bamfiles
# get region/peak size
originaldata <- grangestodataframe(regions)
regionsize <- originaldata$stop - originaldata$start
# Calculate RPKM for plotting densities multiply by 10^6 and divide by
# regions size to get rpkm
myrpkm <- as.data.frame((counts[, 1] * 10 ^ 6)/regionsize)
for (i in 2:ncol(counts)) {
myrpkm[, i] <- counts[, i] * 10 ^ 6/regionsize
}
# take the log2 so that it is a normalized distribution
myrpkmlog2 <- log2(as.matrix(myrpkm) + 1)
colnames(myrpkmlog2) <- unlist(lapply(paste(sampleinfo$sample,
sampleinfo$replicate,
sep = "_"),
as.character)
)
#########################################
# Create stats matrix originaldata is created ~ 10 lines lines above
colnames(originaldata) <- unlist(lapply(colnames(originaldata), gsub,
pattern = "meta.", replacement = ""))
tssdistnum <- length(which(originaldata$region == "TSS-distal"))
tssproxnum <- length(which(originaldata$region == "TSS-proximal"))
statdf <- data.frame(Num_TSSdistals = tssdistnum,
Num_TSSproximals = tssproxnum)
#########################################
# Create densityplot
region <- originaldata$region
forplotdf <- cbind(myrpkmlog2, as.data.frame(region))
##########################################
# Create a summerizedExperiment Object
sampleinfo$status <- stats::relevel(as.factor(sampleinfo$sample), reference)
colnames(counts) <- NULL
SEcounts <- DESeq2::DESeqDataSetFromMatrix(counts, as.data.frame(sampleinfo[c(1:4,6)]), design = ~status)
SummarizedExperiment::rowRanges(SEcounts) = regions
colnames(SummarizedExperiment::rowData(SEcounts)) <-
gsub("meta.","", colnames(SummarizedExperiment::rowData(SEcounts)))
return(list(regioncounts = SEcounts, regioncountstats = statdf,
regioncountsforplot = forplotdf, reference))
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.