R/bnem_main.r

Defines functions plot.bnem plot.bnemsim scoreDnf randomDnf validateGraph transRed transClose simulateStatesRecursive reduceGraph findResiduals epiNEM2Bg dummyCNOlist convertGraph bnem absorption absorptionII simBoolGtn bnemBs plot.bnemBs processDataBCR addNoise

Documented in absorption absorptionII addNoise bnem bnemBs convertGraph dummyCNOlist epiNEM2Bg findResiduals plot.bnem plot.bnemBs plot.bnemsim processDataBCR randomDnf reduceGraph scoreDnf simBoolGtn simulateStatesRecursive transClose transRed validateGraph

#' Add noise
#'
#' Adds noise to simulated data
#' @param sim bnemsim object from simBoolGtn
#' @param sd standard deviation for the rnorm function
#' @author Martin Pirkl
#' @return noisy fold-change matrix
#' @export
#' @examples
#' sim <- simBoolGtn(Sgenes = 10, maxEdges = 10, negation=0.1,layer=1)
#' fc <- addNoise(sim,sd=1)
addNoise <- function(sim,sd=1) {
    fc <- sim$fc
    pos <- which(fc == 1)
    neg <- which(fc == -1)
    zero <- which(fc == 0)
    fc[pos] <- rnorm(length(pos),1,1)
    fc[neg] <- rnorm(length(neg),-1,1)
    fc[zero] <- rnorm(length(zero),0,1)
    return(fc)
}
#' BCR perturbation reproduction
#'
#' Produce the application data from the BCR paper
#' of Pirkl, et al., 2016, Bioinformatics. Raw data is available at
#' https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE68761
#' @param path path to the CEL.gz/Cel files
#' @param combsign if TRUE includes all covariates in ComBat analysis
#' to estimate batch effects.
#' @author Martin Pirkl
#' @return list with the full foldchanges and epxression matrix,
#' a reduced foldchange matrix and the design matrix for the computations
#' @export
#' @importFrom vsn justvsn
#' @importFrom limma lmFit eBayes makeContrasts contrasts.fit
#' @importFrom sva ComBat
#' @importFrom affy rma ReadAffy list.celfiles
#' @importFrom Biobase exprs
#' @examples
#'\dontrun{
#' processDataBCR()
#' }
#' data(bcr)
processDataBCR <- function(path = "", combsign = FALSE) {
    wd <- getwd()
    setwd(path)
    fns <- affy::list.celfiles()
    ab <- affy::ReadAffy(filenames=fns)
    setwd(wd)
    ev <- vsn::vsnrma(ab)
    data <- exprs(ev)
    colnames(data) <- gsub("GSM16808[0-9][0-9]_|\\.CEL\\.gz", "",
                           colnames(data))
    batch <- gsub(".*_", "", colnames(data))
    batch[batch == "Batch"] <- "Batch3"
    colnames(data) <- gsub("SP600125", "Jnk", colnames(data))
    colnames(data) <- gsub("SB203580", "p38", colnames(data))
    colnames(data) <- gsub("10058F4", "Myc", colnames(data))
    colnames(data) <- gsub("Ko", "KO", colnames(data))
    colnames(data) <- gsub("Ly294002", "LY294002", colnames(data))
    colnames(data) <- gsub("LY294002", "Pi3k", colnames(data))
    colnames(data) <- gsub("U0126", "Erk", colnames(data))
    colnames(data) <- gsub("DMSO", "Ctrl", colnames(data))
    colnames(data) <- gsub("IKK2", "Ikk2", colnames(data))
    colnames(data) <- gsub("TAK1", "Tak1", colnames(data))
    vars <- unique(unlist(strsplit(gsub("_Batch.*", "", colnames(data)),
                                   "_")))
    vars <- sort(vars[-grep("\\+", vars)])
    vars <- vars[!vars %in% c("KO")]
    design <- matrix(0, ncol(data), length(vars))
    colnames(design) <- vars
    rownames(design) <- colnames(data)
    for (i in vars) {
        design[grep(i, colnames(data)), i] <- 1
    }
    combos <- NULL
    for (i in which(rowSums(design) > 1)) {
        combos <- c(combos,
                    paste(sort(colnames(design)[design[i, ] > 0]),
                          collapse = "_"))
    }
    combos <- sort(unique(combos))
    design2 <- design
    design2[rowSums(design) > 1, ] <- 0
    for (i in combos) {
        comb <- unlist(strsplit(i, "_"))
        tmp2 <- numeric(nrow(design))
        tmp2[rowSums(design[, comb]) == length(comb) &
                 rowSums(design) == length(comb)] <- 1
        design2 <- cbind(design2, tmp2)
        colnames(design2)[ncol(design2)] <- i
    }
    design2 <- design2[, !colnames(design2) %in% "BCR"]
    colnames(design2)[colnames(design2) %in% "BCR_Ctrl"] <- "BCR"
    if (combsign) {
        dataCB <- sva::ComBat(data, batch,
                              design2[, -grep("Ctrl", colnames(design2))])
    } else {
        dataCB <- sva::ComBat(data, batch)
    }
    fit <- limma::lmFit(dataCB, design2)
    fc <- matrix(0, nrow(dataCB), (ncol(design2)-2)*2 + 1)
    colnames(fc) <- seq_len(ncol(fc))
    contmat <- limma::makeContrasts(Ctrl_vs_BCR="BCR-Ctrl", levels=design2)
    fit2 <- limma::contrasts.fit(fit, contmat)
    fit2 <- limma::eBayes(fit2)
    fc[, 1] <- fit2$coefficients
    colnames(fc)[1] <- "Ctrl_vs_BCR"
    colnames(fc)[-1] <- c(paste("Ctrl_vs",
                                colnames(design2)[!colnames(design2) %in%
                                                      c("Ctrl", "BCR")],
                                sep = "_"),
                          paste("BCR_vs",
                                colnames(design2)[!colnames(design2) %in%
                                                      c("Ctrl", "BCR")],
                                sep = "_"))
    for (i in colnames(design2)) {
        if (i %in% c("Ctrl", "BCR")) { next() }
        contmat <- contmat*0
        contmat[colnames(design2) %in% "Ctrl"] <- -1
        contmat[i, ] <- 1
        fit2 <- limma::contrasts.fit(fit, contmat)
        fit2 <- limma::eBayes(fit2)
        fc[, paste0("Ctrl_vs_", i)] <- fit2$coefficients
        contmat <- contmat*0
        contmat[colnames(design2) %in% "BCR"] <- -1
        contmat[i, ] <- 1
        fit2 <- limma::contrasts.fit(fit, contmat)
        fit2 <- limma::eBayes(fit2)
        fc[, paste0("BCR_vs_", i)] <- fit2$coefficients
    }
    targets <- paste("BCR_vs_BCR",
                     colnames(design2)[!colnames(design2) %in%
                                           c("DMSO", "BCR")],
                     sep = "_")
    targets <- targets[-grep("Myc|LY294|U0126|Vivit|BCR_BCR|BCR_Ctrl", targets)]
    fc2 <- fc[, c("Ctrl_vs_BCR", targets)]
    rownames(fc) <- rownames(data)

    fc2 <- fc2[abs(fc2[, "Ctrl_vs_BCR"]) > 1 &
                   rowMaxs(abs(fc2[, !colnames(fc2) %in%
                                       "Ctrl_vs_BCR"])) >
                   log2(1.5), ]
    fci <- fc2[, !colnames(fc2) %in%
                   "Ctrl_vs_BCR"]*sign(fc2[, "Ctrl_vs_BCR"])
    argl <- rowMins(fci)
    fc2 <- fc2[argl < 0, ]
    bcr <- list(expression = fit$coefficients%*%t(design2), fc = fc2, full = fc,
                design = design2)
    return(bcr)
}
#' Plot Bootstrap result
#'
#' Shows the result of a Boostrap with either edge frequencies
#' or confidence intervals
#' @param x bnemBs object
#' @param scale numeric value for scaling the edgewidth
#' @param shift numeric value for shifting the edgewidth
#' @param cut shows only edges with a fraction larger than cut
#' @param dec integer for function round
#' @param ci if TRUE shows confidence intervals
#' @param cip range for the confidence interval, e.g. 0.95
#' @param method method to use for conidence interval
#' computation (see function binom.confint from package binom)
#' @param ... additional parameters for the function mnem::plotDnf
#' @author Martin Pirkl
#' @return plot of the network from the bootstrap
#' @method plot bnemBs
#' @export
#' @importFrom mnem plotDnf
#' @importFrom binom binom.confint
#' @examples
#' sifMatrix <- rbind(c("A", 1, "B"), c("A", 1, "C"), c("B", 1, "D"),
#' c("C", 1, "D"))
#' temp.file <- tempfile(pattern="interaction",fileext=".sif")
#' write.table(sifMatrix, file = temp.file, sep = "\t",
#' row.names = FALSE, col.names = FALSE,
#' quote = FALSE)
#' PKN <- CellNOptR::readSIF(temp.file)
#' CNOlist <- dummyCNOlist("A", c("B","C","D"), maxStim = 1,
#' maxInhibit = 2, signals = c("A", "B","C","D"))
#' model <- CellNOptR::preprocessing(CNOlist, PKN, maxInputsPerGate = 100)
#' expression <- matrix(rnorm(nrow(slot(CNOlist, "cues"))*10), 10,
#' nrow(slot(CNOlist, "cues")))
#' fc <- computeFc(CNOlist, expression)
#' initBstring <- rep(0, length(model$reacID))
#' res <- bnemBs(search = "greedy", model = model, CNOlist = CNOlist,
#' fc = fc, pkn = PKN, stimuli = "A", inhibitors = c("B","C","D"),
#' parallel = NULL, initBstring = initBstring, draw = FALSE, verbose = FALSE,
#' maxSteps = Inf)
plot.bnemBs <- function(x, scale = 3, shift = 0.1, cut = 0.5, dec = 2,
                        ci = 0, cip = 0.95, method = "exact", ...) {
    y <- x$x
    n <- x$n
    x <- list()
    x$graph <- sort(unique(y))
    x$freq <- table(y)
    x$freq <- x$freq[order(names(x$freq))]/n
    graph <- x$graph
    freq <- x$freq
    graph <- graph[freq >= cut]
    freq <- freq[freq >= cut]
    freq2 <- NULL
    for (i in seq_len(length(graph))) {
        tmp <- rep(freq[i], length(unlist(strsplit(graph[i], "\\+"))))
        if (length(tmp) > 1) {
            freq2 <- c(freq2, tmp[1])
        }
        freq2 <- c(freq2, tmp)
    }
    freq2 <- as.vector(freq2)
    if (ci) {
        freqn <- freq2*n
        cis <- round(binom::binom.confint(freqn, n, cip,
                                          method = method)[, 5:6], dec)
        cis <-  paste0("[", apply(cis, 1, paste, collapse = " - "), "]")
        plotDnf(graph, edgewidth = freq*scale+shift, edgelabel = cis, ...)
    } else {
        freq2 <- round(freq2, dec)
        plotDnf(graph, edgewidth = freq*scale+shift, edgelabel = freq2, ...)
    }
}
#' Bootstraped Network
#'
#' Runs Bootstraps on the data
#' @param fc m x l matrix of foldchanges of gene expression values or
#' equivalent input
#' (normalized pvalues, logodds, ...) for m E-genes and l contrasts. If left
#' NULL, the gene expression
#' data is used to calculate naive foldchanges.
#' @param x number of bootstraps
#' @param f percentage to sample, e.g. f = 0.5 samples only 50%
#' the amount of E-genes as the original data
#' @param replace if TRUE classical bootstrap, if FALSE sub-sampling without
#' replacement
#' @param startString matrix with each row being a string denoting a
#' network to start inference several times with a specific network
#' @param ... additional parameters for the bnem function
#' @author Martin Pirkl
#' @return list with the accumulation of edges in x and the number of
#' bootstraps in n
#' @export
#' @examples
#' sifMatrix <- rbind(c("A", 1, "B"), c("A", 1, "C"), c("B", 1, "D"),
#' c("C", 1, "D"))
#' temp.file <- tempfile(pattern="interaction",fileext=".sif")
#' write.table(sifMatrix, file = temp.file, sep = "\t",
#' row.names = FALSE, col.names = FALSE,
#' quote = FALSE)
#' PKN <- CellNOptR::readSIF(temp.file)
#' CNOlist <- dummyCNOlist("A", c("B","C","D"), maxStim = 1,
#' maxInhibit = 2, signals = c("A", "B","C","D"))
#' model <- CellNOptR::preprocessing(CNOlist, PKN, maxInputsPerGate = 100)
#' expression <- matrix(rnorm(nrow(slot(CNOlist, "cues"))*10), 10,
#' nrow(slot(CNOlist, "cues")))
#' fc <- computeFc(CNOlist, expression)
#' initBstring <- rep(0, length(model$reacID))
#' res <- bnemBs(search = "greedy", model = model, CNOlist = CNOlist,
#' fc = fc, pkn = PKN, stimuli = "A", inhibitors = c("B","C","D"),
#' parallel = NULL, initBstring = initBstring, draw = FALSE, verbose = FALSE,
#' maxSteps = Inf)
bnemBs <- function(fc, x = 10, f = 0.5, replace = TRUE, startString = NULL,
                   ...) {
    accum <- NULL
    for (i in seq_len(x)) {
        cat(i)
        fcsub <- fc[sample(seq_len(nrow(fc)), ceiling(nrow(fc)*f),
                           replace = replace), ]
        if (is.null(startString[1])) {
            tmp <- bnem(fc = fcsub, ...)
        } else {
            if (!is(startString, "matrix")) {
                startString <- t(as.matrix(startString))
            }
            score <- 1
            for (j in seq_len(nrow(startString))) {
                tmp0 <- bnem(initBstring = startString[j, ], fc = fcsub, ...)
                if (min(unlist(tmp0$scores)) < score) {
                    tmp <- tmp0
                }
            }
        }
        accum <- c(accum, tmp$graph)
    }
    accum <- list(x = accum, n = x)
    class(accum) <- "bnemBs"
    return(accum)
}
#' B-Cell receptor signalling perturbations
#'
#' Processed data from experiments with a stimulated B-Cell receptor (bcr)
#' and perturbed signalling genes. The raw data is available at
#' https://www.ncbi.nlm.nih.gov/geo/ with accession id GSE68761. For the
#' process steps we refer to the publication
#' Martin Pirkl, Elisabeth Hand, Dieter Kube, Rainer Spang, Analyzing
#' synergistic and non-synergistic interactions in signalling pathways
#' using Boolean Nested Effect Models, Bioinformatics, Volume 32, Issue 6,
#' 15 March 2016, Pages 893–900, https://doi.org/10.1093/bioinformatics/btv680.
#' Alternatively see also the function processDataBCR for details and
#'  for reproduction.
#' @name bcr
#' @docType data
#' @usage bcr
#' @references Martin Pirkl, Elisabeth Hand, Dieter Kube, Rainer Spang,
#' Analyzing synergistic and non-synergistic interactions in signalling
#' pathways using Boolean Nested Effect Models, Bioinformatics, Volume 32,
#' Issue 6, 15 March 2016, Pages 893–900,
#' https://doi.org/10.1093/bioinformatics/btv680
#' @examples
#' data(bcr)
NA
#' Sample random network and simulate data
#'
#' Draws a random prior network, samples a ground truth from the full boolean
#' extension and generates data
#' @param Sgenes number of S-genes
#' @param maxEdges number of maximum edges (upper limit) in the DAG
#' @param stimGenes number of stimulated S-genes
#' @param layer scaling factor for the sampling of next Sgene layerof the
#' prior. high (5-10) mean more depth and low (0-2) means more breadth
#' @param frac fraction of hyper-edges in the ground truth (GTN)
#' @param maxInDeg maximum number of incoming hyper-edges
#' @param dag if TRUE, graph will be acyclic
#' @param maxSize maximum number of S-genes in a hyper-edge
#' @param maxStim maximum of stimulated S-genes in an experiment (=data samples)
#' @param maxInhibit maximum number of inhibited S-genes in
#'  an experiment (=data samples)
#' @param Egenes number of E-genes per S-gene, e.g. 10 S-genes and 10
#' E-genes will return 100 E-genes overall
#' @param flip fraction of inhibited E-genes
#' @param reps number of replicates
#' @param keepsif if TRUE does not delete sif file, which encodes
#' the prior network
#' @param negation sample probability for negative or NOT edges
#' @param allstim full network in which all S-genes are also stimulated
#' @param and probability for AND-gates in the GTN
#' @param positive if TRUE, sets all stimulation edges to activation, else
#' samples inhibitory edges by 'negation' probability
#' @param verbose TRUE for verbose output
#' @author Martin Pirkl
#' @return list with the corresponding prior graph, ground truth network and
#' data
#' @export
#' @importFrom mnem plotDnf
#' @import CellNOptR
#' @examples
#' sim <- simBoolGtn()
#' plot(sim)
simBoolGtn <-
    function(Sgenes = 10, maxEdges = 25, stimGenes = 2, layer = 1,
             frac = 0.1, maxInDeg = 2,
             dag = TRUE, maxSize = 2, maxStim = 2, maxInhibit = 1,
             Egenes = 10, flip = 0.33, reps = 1, keepsif = FALSE,
             negation = 0.25, allstim = FALSE, and = 0.25,
             positive = TRUE, verbose = FALSE) {
        n <- Sgenes
        m <- Egenes
        p <- layer
        s <- stimGenes
        e <- maxEdges
        r <- reps
        mflip <- flip
        if (allstim) {
            dnf <- randomDnf(n, max.edges = e, max.edge.size = 1, dag = dag,
                             negation = negation)
            cues <- sort(unique(gsub("!", "",
                                     unlist(strsplit(unlist(strsplit(dnf, "=")),
                                                     "\\+")))))
            inputs <-
                unique(unlist(strsplit(gsub("!", "", gsub("=.*", "", dnf)),
                                       "=")))
            outputs <- unique(gsub(".*=", "", dnf))
            stimuli <- cues
            inhibitors <- cues
            both <- stimuli[stimuli %in% inhibitors]
            for (i in both) {
                dnf <- gsub(i, paste(i, "inhibit", sep = ""), dnf)
                dnf <- c(dnf, paste(i, "stim=", i, "inhibit", sep = ""))
                stimuli <- gsub(i, paste(i, "stim", sep = ""), stimuli)
                inhibitors  <- gsub(i, paste(i, "inhibit", sep = ""),
                                    inhibitors)
            }
            pkn <- dnf
        } else {
            Sgenes <- paste0("S", seq_len(n)-1, "g")
            layers <- list()
            layers[[1]] <- stimuli <- prev <- Sgenes[seq_len(s)]
            Sgenes <- inhibitors <- Sgenes[!(Sgenes %in% stimuli)]
            pkn <- NULL
            enew <- 0
            count <- 1
            while(length(Sgenes) > 0) {
                count <- count + 1
                pp <- rbeta(1, 1, (length(Sgenes)*p)/10)
                layers[[count]] <- layer <- sample(Sgenes,
                                                   ceiling(length(Sgenes)*pp))
                enew <- enew + length(prev)*length(layer)
                Sgenes <- Sgenes[!(Sgenes %in% layer)]
                for (i in seq_len(length(prev))) {
                    for (j in layer) {
                        if (negation > 0 & (!positive | count > 2)) {
                            die <- sample(c(0,1),
                                          1,
                                          prob = c(negation, 1-negation))
                        } else {
                            die <- 1
                        }
                        if (die) {
                            pkn <- c(pkn, paste0(prev[i], "=", layer))
                        } else {
                            pkn <- c(pkn, paste0("!", prev[i], "=", layer))
                        }
                    }
                }
                prev <- layer
            }
            dnf <- pkn
            if (enew > e) { e <- enew }
            if (length(dnf) > e) {
                pkn2 <- gsub("!", "", dnf)
                getrid <- sample(which(duplicated(pkn2) == TRUE), length(dnf)-e)
                pkn2 <- dnf[-getrid]
                pkn <- pkn2
                dnf <- pkn
            }
        }
        sifMatrix <- NULL
        for (i in dnf) {
            inputs2 <- unique(unlist(strsplit(gsub("=.*", "", i), "=")))
            output <- unique(gsub(".*=", "", i))
            for (j in inputs2) {
                j2 <- gsub("!", "", j)
                if (j %in% j2) {
                    sifMatrix <- rbind(sifMatrix, c(j, 1, output))
                } else {
                    sifMatrix <- rbind(sifMatrix, c(j2, -1, output))
                }
            }
        }
        mark <- as.numeric(Sys.time())+rnorm(1)
        write.table(sifMatrix, file = paste0("bnemsim", mark, ".sif"),
                    sep = "\t",
                    row.names = FALSE, col.names = FALSE, quote = FALSE)
        PKN <- CellNOptR::readSIF(paste0("bnemsim", mark, ".sif"))
        if (!keepsif) {
            unlink(paste0("bnemsim", mark, ".sif"))
        }
        CNOlist <- dummyCNOlist(stimuli = stimuli, inhibitors = inhibitors,
                                maxStim = maxStim, maxInhibit = maxInhibit,
                                signals = NULL)
        model <- CellNOptR::preprocessing(CNOlist, PKN,
                                          maxInputsPerGate=maxSize,
                                          verbose = verbose)
        bString <- numeric(length(model$reacID))
        if (allstim) {
            bString[sample(seq_len(length(model$reacID)),
                           ceiling(length(model$reacID)*frac))] <- 1
            bString[grep("stim",model$reacID)] <- 1
        } else {
            for (i in seq_len(length(layers))) {
                for (j in seq_len(length(layers[[i]]))) {
                    if (i == 1) {
                        gates <- grep(paste0(layers[[i]][j]),
                                      model$reacID)
                    } else {
                        gates <- grep(paste0("=", layers[[i]][j], "$"),
                                      model$reacID)
                    }
                    if (length(gates) == 1) {
                        bString[gates] <- 1
                    } else {
                        prob <- rep(1-and, length(gates))
                        prob[grep("\\+", model$reacID[gates])] <- and
                        bString[sample(gates,
                                       max(c(floor(length(gates)*frac), 1)),
                                       prob = prob)] <- 1
                    }
                }
            }
            toomany <- table(gsub(".*=", "", model$reacID[as.logical(bString)]))
            toomany <- toomany[toomany > maxInDeg]
            for (i in seq_len(length(toomany))) {
                manyIn <- intersect(which(bString == 1),
                                    grep(paste0("=", names(toomany)[i]),
                                         model$reacID))
                bString[grep(paste0("=", names(toomany)[i]), model$reacID)] <- 0
                bString[sample(manyIn, maxInDeg)] <- 1
            }
        }
        bString <- reduceGraph(bString, model, CNOlist)
        steadyState <- steadyState2 <- simulateStatesRecursive(CNOlist, model,
                                                               bString)
        ind <- grep(paste(inhibitors, collapse = "|"), colnames(steadyState2))
        steadyState2[, ind] <- steadyState2[, ind] + getInhibitors(CNOlist)
        expression <- t(steadyState)[rep(seq_len(ncol(steadyState)), m),
                                rep(seq_len(nrow(steadyState)), r)]
        ERS <- computeFc(CNOlist, t(steadyState))
        stimcomb <- apply(expand.grid(stimuli, stimuli), c(1,2), as.character)
        stimuli.pairs <- apply(stimcomb, 1, paste, collapse = "_")
        ind <- grep(paste(c(paste("Ctrl_vs_", c(stimuli, inhibitors), sep = ""),
                            paste(stimuli, "_vs_", stimuli, "_",
                                  rep(inhibitors, each = length(stimuli)),
                                  sep = ""),
                            paste(stimuli.pairs, "_vs_", stimuli.pairs, "_",
                                  rep(inhibitors, each = length(stimuli.pairs)),
                                  sep = "")),
                          collapse = "|"), colnames(ERS))
        ERS <- ERS[, ind]
        fc <- ERS[rep(seq_len(nrow(ERS)), m), rep(seq_len(ncol(ERS)), r)]
        flip <- sample(seq_len(nrow(fc)), floor(mflip*nrow(fc)))
        fc[flip, ] <- fc[flip, ]*(-1)
        rownames(fc) <- paste(rownames(fc), seq_len(nrow(fc)), sep = "_")
        sim <- list(PKN = PKN, CNOlist = CNOlist, model = model,
                    bString = bString, fc = fc, expression = expression,
                    ERS = ERS)
        class(sim) <- "bnemsim"
        return(sim)
    }
#' Inverse absorption
#'
#' applies "inverse" absorption law to a disjuncitve normal form
#' @param bString a disjunctive normal form or binary vector according to model
#' @param model Model object including the search space, if available.
#' See CellNOptR::preprocessing.
#' @author Martin Pirkl
#' @return bString after "inverse" absorption law
#' @export
#' @import mnem
#' @examples
#' graph <- c("A+B=C", "A=C")
#' absorptionII(graph)
absorptionII <-
    function(bString, model=NULL) {
        if (is.null(model[1])) {
            graph <- bString
            nodes <-
                unique(gsub("!", "",
                            unlist(strsplit(unlist(strsplit(graph, "=")),
                                            "\\+"))))
        } else {
            graph <- model$reacID[bString == 1]
            nodes <- model$namesSpecies
        }
        for (i in graph) {
            players <- unlist(strsplit(gsub("=.*", "", i), "\\+"))
            target <- gsub(".*=", "", i)
            others <- nodes[!nodes %in% c(players, target)]
            players2 <- gsub("!", "", players)
            change1 <- which(players == players2)
            change2 <- which(!(players == players2))
            if (length(change1) > 0) {
                others <- c(others, paste("!", players2[change1],
                                          sep = ""))
            }
            if (length(change2) > 0) {
                others <- c(others[!others %in% players2[change2]],
                            paste("\\+", players2[change2], sep = ""),
                            paste("^", players2[change2], sep = ""))
            }
            targets <-
                intersect(grep(paste(paste(
                    "^", paste(players, collapse = "|^"), sep = ""), "|",
                    paste("+", paste(players, collapse = "|+"), sep = ""),
                    sep = ""), graph), grep(paste("=", target, sep = ""),
                                            graph))
            toomuch <- which(targets %in% grep(paste(others, collapse = "|"),
                                               graph))
            if (length(toomuch) > 0) {
                targets <- targets[-toomuch]
            }
            if (length(targets) > 1) {
                targets <- targets[!targets %in% which(graph %in% i)]
                if (is.null(model[1])) {
                    if (sum(bString %in% graph[targets]) > 0) {
                        bString <- bString[!bString %in% graph[targets]]
                    }
                } else {
                    bString[model$reacID %in% graph[targets]] <- 0
                }
            }
        }
        return(bString)
    }
#' Absorption
#'
#' applies absorption law to a disjuncitve normal form
#' @param bString a disjunctive normal form or binary vector according to model
#' @param model Model object including the search space, if available.
#' See CellNOptR::preprocessing.
#' @author Martin Pirkl
#' @return bString after absorption law
#' @export
#' @examples
#' graph <- c("A+B=C", "A=C")
#' absorption(graph)
absorption <-
    function(bString, model=NULL) {
        if (is.null(model[1])) {
            graph <- bString
        } else {
            graph <- model$reacID[bString == 1]
        }
        for (i in graph) {
            targets <-
                grep(paste("(?=.*", gsub("\\+", ")(?=.*",
                                         gsub("=", ")(?=.*=", i)), ")",
                           sep = ""), graph, perl = TRUE)
            toomuch <-
                grep(paste("!", gsub("\\+", "|!",
                                     gsub("=.*", "", i)), "",
                           sep = ""), graph[targets])
            if (length(toomuch) > 0) {
                targets <-
                    targets[-grep(paste("!", gsub("\\+", "|!",
                                                  gsub("=.*", "", i)), "",
                                        sep = ""), graph[targets])]
            }
            if (length(targets) > 1) {
                targets <- targets[!targets == which(graph %in% i)]
                if (is.null(model[1])) {
                    if (sum(bString %in% graph[targets]) > 0) {
                        bString <- bString[!bString %in% graph[targets]]
                    }
                } else {
                    bString[model$reacID %in% graph[targets]] <- 0
                }
            }
        }
        return(bString)
    }
#' Boolean Nested Effects Model main function
#'
#' This function takes a prior network and normalized perturbation data
#' as input and trains logical functions on that prior network
#' @param search Type of search heuristic. Either "greedy", "genetic" or
#' "exhaustive". "greedy" uses a greedy algorithm to move through the local
#' neighbourhood of a initial hyper-graph. "genetic" uses a genetic algorithm.
#' "exhaustive" searches through the complete search space and is not
#' recommended.
#' @param fc m x l matrix of foldchanges of gene expression values or
#' equivalent input
#' (normalized pvalues, logodds, ...) for m E-genes and l contrasts. If left
#' NULL, the gene expression
#' data is used to calculate naive foldchanges.
#' @param expression Optional normalized m x l matrix of gene expression data
#' for m E-genes and l experiments.
#' @param egenes list object; each list entry is named after an S-gene and
#' contains the names of egenes which are potential children
#' @param pkn Prior knowledge network as output by CellNOptR::readSIF.
#' @param design Optional n x l design matrix with n S-genes and l experiments.
#' If available. If kept NULL, bnem needs either stimuli, inhibitors or a
#' CNOlist object.
#' @param stimuli Character vector of stimuli names.
#' @param inhibitors Character vector of inhibitors.
#' @param signals Optional character vector of signals. Signals are S-genes,
#' which can directly regulate E-genes. If left NULL, all stimuli and
#' inhibitors are defined as signals.
#' @param CNOlist CNOlist object (see package CellNOptR), if available.
#' @param model Model object including the search space, if available.
#' See CellNOptR::preprocessing.
#' @param sizeFac Size factor penelizing the hyper-graph size.
#' @param NAFac factor penelizing NAs in the data.
#' @param parameters parameters for discrete case (not recommended);
#' has to be a list with entries cutOffs and scoring:
#' cutOffs = c(a,b,c) with a (cutoff for real zeros),
#' b (cutoff for real effects),
#' c = -1 for normal scoring, c between 0 and
#' 1 for keeping only relevant % of E-genes,
#' between -1 and 0 for keeping only a specific quantile of E-genes,
#' and c > 1 for keeping the top c E-genes;
#' scoring = c(a,b,c) with a (weight for real effects),
#' c (weight for real zeros),
#' b (multiplicator for effects/zeros between a and c);
#' @param parallel Parallelize the search. An integer value specifies the
#' number of threads on the local machine or a list object as in list(c(1,2,3),
#' c("machine1", "machine2", "machine3")) specifies the threads distributed
#' on different machines (local or others).
#' @param method Scoring method can be "cosine", a correlation,
#' or a distance measure. See ?cor and ?dist for details.
#' @param relFit if TRUE a relative fit for each
#' E-gene is computed (not recommended)
#' @param verbose TRUE for verbose output
#' @param reduce if TRUE reduces the search space for exhaustive search
#' @param initBstring Binary vector for the initial hyper-graph.
#' @param popSize Population size (only "genetic").
#' @param pMutation Probability between 0 and 1 for mutation (only "genetic").
#' @param maxTime Define a maximal time (seconds) for the search.
#' @param maxGens Maximal number of generations (only "genetic").
#' @param stallGenMax Maximum number of stall generations (only "genetic").
#' @param relTol Score tolerance for networks defined as optimal but with a
#' lower score as the real optimum (only "genetic").
#' @param priorBitString Binary vector defining hyper-edges which are added
#' to every hyper-graph. E.g. if you know hyper-edge 55 is definitly there and
#' to fix that, set priorBitString[55] <- 1 (only "genetic").
#' @param selPress Selection pressure between 1 and 2 (if fit="linear") and
#' greater 2 (for fit "nonlinear") for the stochastic universal sampling
#' (only "genetic").
#' @param fit "linear" or "nonlinear fit for stochastic universal sampling
#' @param targetBstring define a binary vector representing a network;
#' if this network is found, the computation stops
#' @param elitism Number of best hyper-graphs transferred to the next generation
#' (only "genetic").
#' @param inversion Number of worst hyper-graphs for which their binary strings
#' are inversed  (only "genetic").
#' @param parallel2 if TRUE parallelises the starts and not the search itself
#' @param selection "t" for tournament selection and "s" for stochastic
#' universal sampling (only "genetic").
#' @param type type of the paralellisation on multpile machines (default:
#' "SOCK")
#' @param exhaustive If TRUE an exhaustive search is conducted if the genetic
#' algorithm would take longer (only "genetic").
#' @param delcyc If TRUE deletes cycles in all hyper-graphs (not recommended).
#' @param seeds how many starts for the greedy search? (default: 1); uses
#' the n-dimensional cube (n = number of S-genes) to maximize search
#' space coverage
#' @param maxSteps Maximal number of steps (only "greedy").
#' @param node vector of S-gene names, which are used in the greedy
#' search; if node = NULL all nodes are considered
#' @param absorpII Use inverse absorption (default: TRUE).
#' @param draw If TRUE draws the network evolution.
#' @param prior Binary vector. A 1 specifies hyper-edges which should not be
#' optimized (only "greedy").
#' @param maxInputsPerGate If no model is supplied, one is created with
#' maxInputsPerGate as maximum number of parents for each hyper-edge.
#' @author Martin Pirkl
#' @seealso nem
#' @export
#' @import
#' CellNOptR
#' snowfall
#' mnem
#' methods
#' @return List object including the optimized hyper-graph, its
#' corresponding binary vector for full hyper-graph and optimized scores.
#' @examples
#' sifMatrix <- rbind(c("A", 1, "B"), c("A", 1, "C"), c("B", 1, "D"),
#' c("C", 1, "D"))
#' temp.file <- tempfile(pattern="interaction",fileext=".sif")
#' write.table(sifMatrix, file = temp.file, sep = "\t",
#' row.names = FALSE, col.names = FALSE,
#' quote = FALSE)
#' PKN <- CellNOptR::readSIF(temp.file)
#' CNOlist <- dummyCNOlist("A", c("B","C","D"), maxStim = 1,
#' maxInhibit = 2, signals = c("A", "B","C","D"))
#' model <- CellNOptR::preprocessing(CNOlist, PKN, maxInputsPerGate = 100)
#' expression <- matrix(rnorm(nrow(slot(CNOlist, "cues"))*10), 10,
#' nrow(slot(CNOlist, "cues")))
#' fc <- computeFc(CNOlist, expression)
#' initBstring <- rep(0, length(model$reacID))
#' res <- bnem(search = "greedy", model = model, CNOlist = CNOlist,
#' fc = fc, pkn = PKN, stimuli = "A", inhibitors = c("B","C","D"),
#' parallel = NULL, initBstring = initBstring, draw = FALSE, verbose = FALSE,
#' maxSteps = Inf)
bnem <-
    function(search = "greedy",

             fc=NULL,
             expression=NULL,
             egenes=NULL,
             pkn=NULL,
             design=NULL,
             stimuli=NULL,
             inhibitors=NULL,
             signals=NULL,
             CNOlist=NULL,
             model=NULL,
             sizeFac=10^-10,
             NAFac=1,
             parameters=list(cutOffs=c(0,1,0), scoring=c(0.1,0.2,0.9)),
             parallel = NULL,
             method = "cosine",
             relFit = FALSE,
             verbose = TRUE,
             reduce = TRUE,
             parallel2 = 1,

             initBstring = NULL,
             popSize = 100,
             pMutation = 0.5,
             maxTime = Inf,
             maxGens = Inf,
             stallGenMax = 10,
             relTol = 0.01,
             priorBitString = NULL,
             selPress = c(1.2,0.0001),
             fit = "linear",
             targetBstring = "none",
             elitism = NULL,
             inversion = NULL,
             selection = c("t"),
             type = "SOCK",
             exhaustive = FALSE,
             delcyc = FALSE,

             seeds = 1,
             maxSteps = Inf,
             node = NULL,
             absorpII = TRUE,
             draw = TRUE,
             prior = NULL,
             maxInputsPerGate = 2
    ) {
        approach <- "fc"
        if (is.null(fc[1])) { approach <- "abs" }
        if (is.null(fc[1]) & is.null(expression[1])) {
            stop("please either provide a matrix of foldchanges 'fc' ",
                 "or a matrix of expression values 'expression'")
        }
        if (is.null(model[1]) | length(CNOlist) == 0) {
            tmp <- preprocessInput(stimuli=stimuli,inhibitors=inhibitors,
                                   signals=signals,design=design,
                                   expression=expression,
                                   fc=fc,pkn=pkn,
                                   maxInputsPerGate=maxInputsPerGate)

            CNOlist <- tmp$CNOlist
            NEMlist <- tmp$NEMlist
            model <- tmp$model
        } else {
            NEMlist <- list()
            NEMlist$fc <- fc
            NEMlist$expression <- expression
            NEMlist$egenes <- egenes
        }
        CNOlist <- checkCNOlist(CNOlist)
        ## create foldchanges if not already included in nemlist
        NEMlist <- checkNEMlist(NEMlist = NEMlist, CNOlist = CNOlist,
                                parameters = parameters, approach = approach,
                                method)
        if (search %in% c("greedy", "genetic", "exhaustive")) {

            if (search %in% "greedy") {
                res <- localSearch(CNOlist=CNOlist, NEMlist=NEMlist,
                                   model=model,
                                   approach = approach, initSeed = initBstring,
                                   seeds = seeds, parameters = parameters,
                                   sizeFac = sizeFac, NAFac = NAFac,
                                   relTol = relTol, verbose = verbose,
                                   parallel=parallel, parallel2 = parallel2,
                                   relFit = relFit, method = method,
                                   max.steps = maxSteps, max.time = maxTime,
                                   node = node, absorpII = absorpII,
                                   draw = draw,
                                   prior = prior)
                minSeed <- 1
                if (length(res$scores) > 1) {
                    for (i in seq_len(length(res$scores))) {
                        if (min(res$scores[[i]]) < min(res$scores[[minSeed]])) {
                            minSeed <- i
                        }
                    }
                }
                bString <- res$bStrings[minSeed, ]
                result <- list(graph = model$reacID[as.logical(bString)],
                               bString = bString, bStrings = res$bStrings,
                               scores = res$scores)
            }
            if (search %in% "genetic") {
                res <- gaBinaryNemT1(CNOlist=CNOlist, model=model,
                                     initBstring = initBstring,
                                     sizeFac = sizeFac,
                                     NAFac = NAFac,popSize = popSize,
                                     pMutation = pMutation,maxTime = maxTime,
                                     maxGens = maxGens,
                                     stallGenMax = stallGenMax,relTol = relTol,
                                     verbose = verbose,
                                     priorBitString = priorBitString,
                                     selPress = selPress,approach = approach,
                                     NEMlist=NEMlist,fit = fit,
                                     targetBstring = targetBstring,
                                     elitism = elitism,inversion = inversion,
                                     graph = draw,parameters = parameters,
                                     parallel = parallel,parallel2 = parallel2,
                                     selection = selection,relFit = relFit,
                                     method = method,type = type,
                                     exhaustive = exhaustive,delcyc = delcyc
                )
                result <- list(graph = model$reacID[as.logical(res$bString)],
                               bString = res$bString, bStrings = res$stringsTol,
                               scores = res$stringsTolScores)
            }
            if (search %in% "exhaustive") {
                res <- exSearch(CNOlist=CNOlist,model=model,sizeFac=sizeFac,
                                NAFac=NAFac,NEMlist=NEMlist,
                                parameters=parameters, parallel = parallel,
                                method = method, relFit = relFit,
                                verbose = verbose, reduce = reduce,
                                approach = approach)
                result <- list(graph = model$reacID[as.logical(res$bString)],
                               bString = res$bString, bStrings = res$bStrings,
                               scores = res$scores)
            }
            class(result) <- "bnem"
            return(result)
        } else {
            return("search must be be one of greedy, genetic or exhaustive")
        }
    }
#' Compute differential effects
#'
#' computes differential effects given an activation pattern
#' (absolute gene expression or truth table)
#' @param CNOlist CNOlist object (see package CellNOptR), if available.
#' @param y activation pattern according to the annotation in CNOlist
#' @author Martin Pirkl
#' @return numeric matrix with annotated response scheme
#' @export
#' @import CellNOptR
#' @examples
#' sifMatrix <- rbind(c("A", 1, "B"), c("A", 1, "C"), c("B", 1, "D"),
#' c("C", 1, "D"))
#' temp.file <- tempfile(pattern="interaction",fileext=".sif")
#' write.table(sifMatrix, file = temp.file, sep = "\t",
#' row.names = FALSE, col.names = FALSE,
#' quote = FALSE)
#' PKN <- CellNOptR::readSIF(temp.file)
#' CNOlist <- dummyCNOlist("A", c("B","C","D"), maxStim = 1, maxInhibit = 2,
#' signals = c("A", "B","C","D"))
#' model <- CellNOptR::preprocessing(CNOlist, PKN, maxInputsPerGate = 100)
#' expression <- matrix(rnorm(nrow(slot(CNOlist, "cues"))*10), 10,
#' nrow(slot(CNOlist, "cues")))
#' fc <- computeFc(CNOlist, expression)
computeFc <-
    function (CNOlist, y) {
        test <- 0 # for debugging DONT FORGET TO SET TO 0!!!
        CompMat <- numeric()
        CompMatNames <- character()
        cnolistStimuli <- rowSums(getStimuli(CNOlist))
        cnolistInhibitors <- rowSums(getInhibitors(CNOlist))
        cnolistCues <- rowSums(getCues(CNOlist))
        maxStim <- max(cnolistStimuli)
        maxKd <- max(cnolistInhibitors)
        grepCtrl <- which(cnolistCues == 0)[1]
        grepStims <- intersect(which(cnolistStimuli != 0),
                               which(cnolistInhibitors == 0))
        grepKds <- intersect(which(cnolistStimuli == 0),
                             which(cnolistInhibitors != 0))
        grepStimsKds <- intersect(which(cnolistStimuli != 0),
                                  which(cnolistInhibitors != 0))
        stimsKdsCbind <- cbind(getStimuli(CNOlist), getInhibitors(CNOlist))
        ## get ctrl_vs_kd:
        inhibitorsNames <- NULL
        for (i in grepKds) {
            inhibitorsNames <-
                c(inhibitorsNames,
                  paste(colnames(getInhibitors(CNOlist))[
                      getInhibitors(CNOlist)[i, ] >= 1],
                      collapse = "_"))
        }
        if (length(grepKds) > 0) {
            CompMat <- cbind(CompMat, y[, grepKds] - y[, grepCtrl])
            CompMatNames <-
                c(CompMatNames, paste("Ctrl_vs_", inhibitorsNames,
                                      sep = ""))
        }
        ## get ctrl_vs_stim:
        stimuliNames <- NULL
        for (i in grepStims) {
            if (sum(getStimuli(CNOlist)[i, ] >= 1) > 1) {
                stimuliNames <-
                    c(stimuliNames,
                      paste(names(which(getStimuli(CNOlist)[i, ] >= 1)),
                            collapse = "_"))
            } else {
                stimuliNames <-
                    c(stimuliNames,
                      colnames(getStimuli(CNOlist))[
                          getStimuli(CNOlist)[i, ] >= 1])
            }
        }
        if (length(grepStims) > 0) {
            CompMat <- cbind(CompMat, y[, grepStims] - y[, grepCtrl])
            CompMatNames <- c(CompMatNames, paste("Ctrl_vs_", stimuliNames,
                                                  sep = ""))
        }
        ## get stim_vs_stim_kd (experimental):
        ## combiNames <- NULL
        ## for (i in grepStimsKds) {
        ##     combiNames <-
        ##         c(combiNames,
        ##           paste(names(which(stimsKdsCbind[i, ] >= 1)),
        ##                 collapse = "_"))
        ## }
        combiNames <- rownames(getCues(CNOlist))[grepStimsKds]
        if (length(grepStimsKds) > 0 & length(grepStims) > 0) {
            CompMat <-
                cbind(CompMat,
                      y[, rep(grepStimsKds, length(grepStims))] -
                          y[, sort(rep(grepStims, length(grepStimsKds)))])
            orderStims <- order(rep(grepStims, length(grepStimsKds)))
            CompMatNames <-
                c(CompMatNames,
                  paste(rep(stimuliNames, length(combiNames))[orderStims],
                        "_vs_", rep(combiNames, length(stimuliNames)),
                        sep = ""))
        }
        ## combine:
        colnames(CompMat) <- CompMatNames
        if (sum(duplicated(colnames(CompMat)) == TRUE)) {
            CompMat <-
                CompMat[, !duplicated(colnames(CompMat))]
        }
        if (test == 1) {
            ## get stim_vs_stim:
            combiNames2 <- NULL
            for (i in grepStims) {
                combiNames2 <-
                    c(combiNames2,
                      paste(names(which(getStimuli(CNOlist)[i, ] >= 1)),
                            collapse = "_"))
            }
            if (length(grepStims) > 0) {
                CompMat <-
                    cbind(CompMat, y[, rep(grepStims, length(grepStims))] -
                              y[, sort(rep(grepStims, length(grepStims)))])
                orderStims2 <- order(rep(grepStims, length(grepStims)))
                CompMatNames <-
                    c(CompMatNames,
                      paste(rep(stimuliNames,
                                length(combiNames2))[orderStims2], "_vs_",
                            rep(combiNames2, length(stimuliNames)), sep = ""))
            }
            ## get kd_vs_stim_kd:
            combiNames <- NULL
            for (i in grepStimsKds) {
                combiNames <-
                    c(combiNames,
                      paste(names(which(stimsKdsCbind[i, ] >= 1)),
                            collapse = "_"))
            }
            if (length(grepStimsKds) > 0 & length(grepKds) > 0) {
                CompMat <-
                    cbind(CompMat, y[, rep(grepStimsKds, length(grepKds))] -
                              y[, sort(rep(grepKds,
                                           length(grepStimsKds)))])
                orderKds <- order(rep(grepKds, length(grepStimsKds)))
                CompMatNames <-
                    c(CompMatNames,
                      paste(rep(inhibitorsNames,
                                length(combiNames))[orderKds], "_vs_",
                            rep(combiNames, length(inhibitorsNames)), sep = ""))
            }
            ## get ctrl_vs_stim_kd:
            combiNames <- NULL
            for (i in grepStimsKds) {
                combiNames <-
                    c(combiNames,
                      paste(names(which(stimsKdsCbind[i, ] >= 1)),
                            collapse = "_"))
            }
            if (length(grepStimsKds) > 0) {
                CompMat <- cbind(CompMat, y[, grepStimsKds] - y[, grepCtrl])
                CompMatNames <- c(CompMatNames, paste("Ctrl_vs_", combiNames,
                                                      sep = ""))
            }
        }
        ## combine:
        colnames(CompMat) <- CompMatNames
        if (sum(duplicated(colnames(CompMat)) == TRUE)) {
            CompMat <-
                CompMat[, !duplicated(colnames(CompMat))]
        }
        return(CompMat)
    }
#' Convert normal form
#'
#' converts a disjunctive normal form into a conjunctive normal form and
#' vice versa;
#' input graph as disjunctive normal form like that:
#' c("A+B=D", "C=D", "G+F=U", ...); output is the dual element
#' also in disjunctive normal form;
#' @param g graph in normal form
#' @author Martin Pirkl
#' @return converted graph normal form
#' @export
#' @examples
#' g <- "A+B=C"
#' g2 <- convertGraph(g)
convertGraph <-
    function(g) {
        g <- sort(g)
        targets <- gsub(".*=", "", g)
        g.new <- NULL
        for (i in unique(targets)) {
            dnf <- list()
            count <- 1
            for (j in g[grep(paste("=", i, sep = ""), g)]) {
                dnf[[count]] <-
                    sort(unique(unlist(strsplit(gsub("=.*", "", j), "\\+"))))
                count <- count + 1
            }
            cnf <- expand.grid(dnf)
            dnf <- NULL
            for (j in seq_len(nrow(cnf))) {
                dnf <- c(dnf, paste(sort(unique(unlist(cnf[j, ]))),
                                    collapse = "+"))
            }
            dnf <- paste(sort(dnf), "=", i, sep = "")
            g.new <- c(g.new, dnf)
        }
        vertices <- sort(unique(unlist(strsplit(unlist(strsplit(g.new, "=")),
                                                "\\+"))))
        for (i in vertices) {
            if (length(grep(paste(i, ".*", i, ".*=", sep = ""), g.new)) > 0) {
                g.new <- g.new[-grep(paste(i, ".*", i, ".*=", sep = ""), g.new)]
            }
        }
        return(g.new)
    }
#' Create dummy CNOlist
#'
#' creates a general CNOlist object from meta information
#' @param stimuli Character vector of stimuli names.
#' @param inhibitors Character vector of inhibitors.
#' @param maxStim maximal number of stimulated genes for a single experiment
#' @param maxInhibit maximal number of inhibited genes for a single experiment
#' @param signals Optional character vector of signals. Signals are S-genes,
#' which can directly regulate E-genes. If left NULL, all stimuli and
#' inhibitors are defined as signals.
#' @author Martin Pirkl
#' @return CNOlist object
#' @export
#' @import CellNOptR
#' @examples
#' sifMatrix <- rbind(c("A", 1, "B"), c("A", 1, "C"), c("B", 1, "D"),
#' c("C", 1, "D"))
#' temp.file <- tempfile(pattern="interaction",fileext=".sif")
#' write.table(sifMatrix, file = temp.file, sep = "\t",
#' row.names = FALSE, col.names = FALSE,
#' quote = FALSE)
#' PKN <- CellNOptR::readSIF(temp.file)
#' CNOlist <- dummyCNOlist("A", c("B","C","D"), maxStim = 1, maxInhibit = 2,
#' signals = c("A", "B","C","D"))
dummyCNOlist <-
    function(stimuli = NULL, inhibitors = NULL, maxStim = 0, maxInhibit = 0,
             signals = NULL) {
        if (is.null(signals[1])) {
            signals <- c(stimuli, inhibitors)
        }
        stimn <- length(stimuli)
        inhibn <- length(inhibitors)
        ## do the stim design:
        if (maxStim > stimn) {
            maxStim <- stimn
        }
        if (stimn > 0 & maxStim > 0) {
            mat.size <- 0
            for (i in seq_len(maxStim)) {
                mat.size <- mat.size + choose(stimn, i)
            }
            stimDesign <- matrix(0, mat.size, stimn)
            if (length(stimuli) == 1) {
                stimDesign <- t(stimDesign)
            }
            diag(stimDesign) <- 1
            count <- stimn
            if (maxStim > 1) {
                for (i in 2:maxStim) {
                    combs <- t(combn(seq_len(stimn), i))
                    for (j in seq_len(nrow(combs))) {
                        count <- count + 1
                        stimDesign[count, combs[j, ]] <- 1
                    }
                }
            }
            colnames(stimDesign) <- stimuli
        }
        ## do the inhib design:
        inhibn <- length(inhibitors)
        if (maxInhibit > inhibn) {
            maxInhibit <- inhibn
        }
        if (inhibn > 0 & maxInhibit > 0) {
            mat.size <- 0
            for (i in seq_len(maxInhibit)) {
                mat.size <- mat.size + choose(inhibn, i)
            }
            inhibDesign <- matrix(0, mat.size, inhibn)
            if (length(inhibitors) == 1) {
                inhibDesign <- t(inhibDesign)
            }
            diag(inhibDesign) <- 1
            count <- inhibn
            if (maxInhibit > 1) {
                for (i in 2:maxInhibit) {
                    combs <- t(combn(seq_len(inhibn), i))
                    for (j in seq_len(nrow(combs))) {
                        count <- count + 1
                        inhibDesign[count, combs[j, ]] <- 1
                    }
                }
            }
            colnames(inhibDesign) <- inhibitors
        }
        ## put them together in combinations:
        if (stimn > 0 & inhibn > 0) {
            if (maxStim > 0 & maxInhibit > 0) {
                design <- matrix(0, nrow(stimDesign)*nrow(inhibDesign),
                                 stimn+inhibn)
                for (i in seq_len(nrow(stimDesign))) {
                    design[((i-1)*nrow(inhibDesign) + 1):
                               (i*nrow(inhibDesign)), ] <-
                        cbind(stimDesign[rep(i, nrow(inhibDesign)), ,
                                         drop = FALSE],
                              inhibDesign)
                }
            }
            if (maxStim > 0 & maxInhibit == 0) {
                inhibDesign <- matrix(0, nrow(stimDesign), inhibn)
                if (length(inhibitors) == 1) {
                    inhibDesign <- t(inhibDesign)
                }
                design <- cbind(stimDesign, inhibDesign)
            }
            if (maxStim == 0 & maxInhibit > 0) {
                stimDesign <- matrix(0, nrow(inhibDesign), stimn)
                if (length(stimuli) == 1) {
                    stimDesign <- t(stimDesign)
                }
                design <- cbind(stimDesign, inhibDesign)
            }
            if (maxStim == 0 & maxInhibit == 0) {
                inhibDesign <- matrix(0, 1, inhibn)
                stimDesign <- matrix(0, 1, stimn)
                design <- cbind(stimDesign, inhibDesign)
            }
            colnames(design) <- c(stimuli, inhibitors)
        }
        colnamesdesign <- colnames(design)
        design <- rbind(cbind(stimDesign,
                              matrix(0, nrow(stimDesign),
                                     (ncol(design) - ncol(stimDesign)))),
                        cbind(matrix(0, nrow(inhibDesign),
                                     (ncol(design) - ncol(inhibDesign))),
                              inhibDesign), design)
        colnames(design) <- colnamesdesign
        ## make signalmatrix:
        signaln <- length(signals)
        if (signaln > 0) {
            signalData <- matrix(0, nrow(design)+1, signaln)
            colnames(signalData) <- signals
        } else {
            signalData <- matrix(0, nrow(design)+1, 1)
        }
        smult <- nrow(design)/nrow(stimDesign)
        imult <- nrow(design)/nrow(inhibDesign)
        design <- rbind(0, design)
        stimDesign <- as.matrix(design[, seq_len(ncol(stimDesign))])
        inhibDesign <- as.matrix(design[, (ncol(stimDesign)+1):ncol(design)])
        rownames(design) <- rownames(inhibDesign) <- rownames(stimDesign) <-
            rownames(signalData) <- c("Ctrl", 2:nrow(design))
        getRowname <- function(i, M) {
            r <- paste(colnames(M)[M[i, ] == 1], collapse = "_")
            return(r)
        }
        rownames(design)[2:nrow(design)] <-
            rownames(inhibDesign)[2:nrow(design)] <-
            rownames(stimDesign)[2:nrow(design)] <-
            rownames(signalData)[2:nrow(design)] <-
            unlist(lapply(as.list(2:nrow(design)), getRowname, design))
        if (ncol(stimDesign) == 1) {
            colnames(stimDesign) <- stimuli
        }
        if (ncol(inhibDesign) == 1) {
            colnames(inhibDesign) <- inhibitors
        }
        cnolist <- new("CNOlist",
                       cues = design, inhibitors = inhibDesign,
                       stimuli = stimDesign,
                       signals = list(signalData, signalData),
                       timepoints = as.character(c(0,1)))
        cnolist <- checkCNOlist(cnolist)
        return(cnolist)
    }
#' Switch between epiNEM and B-NEM
#'
#' Convert epiNEM model into general Boolean graph.
#' Only needed for comparing accuracy of inferred network for bnem and epiNEM.
#' @param t full epiNEM model
#' @author Martin Pirkl
#' @seealso CreateTopology
#' @export
#' @import epiNEM
#' @examples
#' topology <- epiNEM::CreateTopology(3, 1, force = TRUE)
#' topology <- unlist(unique(topology), recursive = FALSE)
#' extTopology <- epiNEM::ExtendTopology(topology$model, 100)
#' b <- epiNEM2Bg(extTopology)
#' @return differential effects pattern
epiNEM2Bg <- function(t) {
    if (is.matrix(t)) {
        colnames(t) <- paste("S_vs_S_", gsub("\\.", "_", colnames(t)),
                             sep = "")
        return(t)
    } else {
        tmp <- rowSums(t$origModel)
        stim <- rownames(t$origModel)[tmp == min(tmp)]
        graph <- NULL

        for (i in seq_len(length(t$column))) {
            parents <-
                sort(rownames(t$origModel)[t$origModel[
                    , t$column[i]] == 1])
            child <- colnames(t$origModel)[t$column[i]]
            if (length(parents) == 2) {
                if (t$logics[i] %in% "OR") {
                    graph <- unique(c(graph,
                                      convertGraph(adj2dnf(t$origModel))))
                }
                if (t$logics[i] %in% "AND") {
                    graph <-
                        unique(c(graph,
                                 transRed(
                                     convertGraph(adj2dnf(t$origModel)))))
                    graph <-
                        c(graph,
                          convertGraph(graph[
                              grep(paste(paste(parents,
                                               collapse = ".*\\+.*"),
                                         child, sep = "="), graph)]))
                    graph <-
                        graph[-grep(paste(paste(parents,
                                                collapse = ".*\\+.*"),
                                          child, sep = "="), graph)]
                }
                if (t$logics[i] %in% paste(parents[2], " masks the effect of ",
                                           parents[1], sep = "")) {
                    graph <- c(graph,
                               unique(convertGraph(adj2dnf(t$origModel))))
                    graph <-
                        c(graph,
                          gsub(parents[2],
                               paste("!", parents[2], sep = ""),
                               gsub("\\+\\+|^\\+", "",
                                    gsub(parents[1], "",
                                         graph[
                                             grep(paste(paste(
                                                 parents,
                                                 collapse =
                                                     ".*\\+.*"), child,
                                                 sep = "="), graph)]))),
                          gsub("\\+=", "=",
                               gsub("\\+\\+|^\\+", "",
                                    gsub(parents[2], "",
                                         graph[grep(paste(paste(parents,
                                                                collapse =
                                                                    ".*\\+.*"),
                                                          child, sep = "="),
                                                    graph)]))))
                    graph <- graph[-grep(paste(paste(parents,
                                                     collapse = ".*\\+.*"),
                                               child, sep = "="), graph)]
                }
                if (t$logics[i] %in% paste(parents[1],
                                           " masks the effect of ",
                                           parents[2], sep = "")) {
                    graph <- c(graph,
                               unique(convertGraph(adj2dnf(t$origModel))))
                    graph <-
                        c(graph,
                          gsub(parents[1],
                               paste("!", parents[1], sep = ""),
                               gsub("\\+\\+|^\\+", "",
                                    gsub(parents[2], "",
                                         graph[grep(paste(paste(parents,
                                                                collapse =
                                                                    ".*\\+.*"),
                                                          child, sep = "="),
                                                    graph)]))),
                          gsub("\\+=", "=",
                               gsub("\\+\\+|^\\+", "",
                                    gsub(parents[1], "",
                                         graph[grep(paste(paste(parents,
                                                                collapse =
                                                                    ".*\\+.*"),
                                                          child, sep = "="),
                                                    graph)]))))
                    graph <- gsub("\\+=", "=", graph)
                    graph <-
                        graph[-grep(paste(paste(parents,
                                                collapse = ".*\\+.*"),
                                          child, sep = "="), graph)]
                }
                if (t$logics[i] %in% "XOR") {
                    graph <- unique(c(graph,
                                      convertGraph(adj2dnf(t$origModel))))
                    edge <-  graph[grep(paste(paste(parents,
                                                    collapse = ".*\\+.*"),
                                              child, sep = "="), graph)]
                    for (j in parents) {
                        edge <- gsub(j, paste("!", j, sep = ""), edge)
                    }
                    graph <- unique(c(graph, edge))
                }
            }
            if (length(parents) > 2 | length(parents) == 1) {
                graph <- c(graph, paste(sort(parents), child, sep = "="))
            }
        }
        all <- rownames(t$origModel)
        children2 <- unique(gsub(".*=", "", graph))
        if (sum(!(all %in% children2)) > 0) {
            graph <- c(graph, paste("S", all[!(all %in% children2)],
                                    sep = "="))
        }
        return(unique(graph))
    }
}
#' Compute residuals
#'
#' calculates residuals (data and optimized network do not match) and
#' visualizes them
#' @param bString Binary vector denoting the network given a model
#' @param CNOlist CNOlist object (see package CellNOptR), if available.
#' @param model Model object including the search space, if available.
#' See CellNOptR::preprocessing.
#' @param fc m x l matrix of foldchanges of gene expression values or
#' equivalent input
#' (normalized pvalues, logodds, ...) for m E-genes and l contrasts. If left
#' NULL, the gene expression
#' data is used to calculate naive foldchanges.
#' @param expression Optional normalized m x l matrix of gene expression data
#' for m E-genes and l experiments.
#' @param egenes list object; each list entry is named after an S-gene and
#' contains the names of egenes which are potential children
#' @param parameters parameters for discrete case (not recommended);
#' has to be a list with entries cutOffs and scoring:
#' cutOffs = c(a,b,c) with a (cutoff for real zeros),
#' b (cutoff for real effects),
#' c = -1 for normal scoring, c between 0 and
#' 1 for keeping only relevant % of E-genes,
#' between -1 and 0 for keeping only a specific quantile of E-genes,
#' and c > 1 for keeping the top c E-genes;
#' scoring = c(a,b,c) with a (weight for real effects),
#' c (weight for real zeros),
#' b (multiplicator for effects/zeros between a and c);
#' @param method Scoring method can be "cosine", a correlation,
#' or a distance measure. See ?cor and ?dist for details.
#' @param sizeFac Size factor penelizing the hyper-graph size.
#' @param main Main title of the figure.
#' @param sub Subtitle of the figure.
#' @param cut If TRUE does not visualize experiments/S-genes which do
#' not have any residuals.
#' @param parallel Parallelize the search. An integer value specifies the
#' number of threads on the local machine or a list object as in list(c(1,2,3),
#' c("machine1", "machine2", "machine3")) specifies the threads distributed
#' on different machines (local or others).
#' @param verbose TRUE for verbose output
#' @param ... additional parameters for epiNEM::HeatmapOP
#' @author Martin Pirkl
#' @return numeric matrices indicating experiments and/or genes, where the
#' network and the data disagree
#' @export
#' @import
#' CellNOptR
#' snowfall
#' @examples
#' sifMatrix <- rbind(c("A", 1, "B"), c("A", 1, "C"), c("B", 1, "D"),
#' c("C", 1, "D"))
#' temp.file <- tempfile(pattern="interaction",fileext=".sif")
#' write.table(sifMatrix, file = temp.file, sep = "\t",
#' row.names = FALSE, col.names = FALSE,
#' quote = FALSE)
#' PKN <- CellNOptR::readSIF(temp.file)
#' CNOlist <- dummyCNOlist("A", c("B","C","D"), maxStim = 1, maxInhibit = 2,
#' signal = c("A", "B","C","D"))
#' model <- CellNOptR::preprocessing(CNOlist, PKN, maxInputsPerGate = 100)
#' expression <- matrix(rnorm(nrow(slot(CNOlist, "cues"))*10), 10,
#' nrow(slot(CNOlist, "cues")))
#' fc <- computeFc(CNOlist, expression)
#' initBstring <- rep(0, length(model$reacID))
#' res <- bnem(search = "greedy", CNOlist = CNOlist, fc = fc, model = model,
#' parallel = NULL, initBstring = initBstring, draw = FALSE, verbose = FALSE,
#' maxSteps = Inf)
#' rownames(fc) <- seq_len(nrow(fc))
#' ## val <- validateGraph(CNOlist = CNOlist, fc = fc, model = model,
#' ## bString = res$bString, Egenes = 10, Sgene = 4)
#' residuals <- findResiduals(res$bString, CNOlist, model, fc = fc)
findResiduals <-
    function(bString, CNOlist, model, fc=NULL, expression=NULL, egenes=NULL,
             parameters = list(cutOffs = c(0,1,0),
                               scoring = c(0.1,0.2,0.9)),
             method = "s", sizeFac = 10^-10,
             main = "residuals for decoupled vertices",
             sub = paste0("green residuals are added effects (left positive,",
                          " right negative) and red residuals are deleted ",
                          "effects"),
             cut = TRUE, parallel = NULL, verbose = TRUE, ...) {
        approach <- "fc"
        if (is.null(fc[1])) { approach <- "abs" }
        if (is.null(fc[1]) & is.null(expression[1])) {
            stop("please either provide a matrix of foldchanges 'fc' ",
                 "or a matrix of expression values 'expression'")
        }
        NEMlist <- list()
        NEMlist$fc <- fc
        NEMlist$egenes <- egenes
        NEMlist$expression <- expression
        CNOlist <- checkCNOlist(CNOlist)
        method <- checkMethod(method)[1]
        NEMlist <- checkNEMlist(NEMlist, CNOlist, parameters, approach, method)
        simResults <- simulateStatesRecursive(CNOlist = CNOlist, model = model,
                                              bString = bString)
        SCompMat <- computeFc(CNOlist, t(simResults))
        SCompMat <- SCompMat[, colnames(SCompMat) %in%
                                 colnames(NEMlist$fc)]
        NEMlist$fc <- NEMlist$fc[, order(colnames(NEMlist$fc))]
        SCompMat <- SCompMat[, order(colnames(SCompMat))]
        SCompMat <- SCompMat[, colnames(NEMlist$fc)]
        stimuli <- colnames(getStimuli(CNOlist))
        inhibitors <- colnames(getInhibitors(CNOlist))
        tmp <- computeScoreNemT1(CNOlist, model = model, bString,
                                 NEMlist = NEMlist, tellme = 1,
                                 parameters = parameters, method = method,
                                 verbose = verbose, sizeFac = sizeFac)
        EtoS <- tmp$EtoS

        if (verbose) {
            message("calculating residuals for ",
                    ncol(getSignals(CNOlist)[[1]]),
                    " S-genes based on ", length(unique(EtoS[, 1])),
                    " E-genes.")
        }

        resMat <- matrix(0, nrow = ncol(getSignals(CNOlist)[[1]]),
                         ncol = 2*ncol(NEMlist$fc))
        resVec <- numeric(ncol(getSignals(CNOlist)[[1]]))
        resType <- matrix(0, nrow = ncol(getSignals(CNOlist)[[1]]),
                          ncol = 2*ncol(NEMlist$fc))

        checkSgene <- function(i) {
            resType <- numeric(2*ncol(NEMlist$fc))
            resMat <- numeric(2*ncol(NEMlist$fc))
            if (sum(EtoS[, 2] == i) == 0) {
                resType[seq_len(length(resType))] <- -1
                resMat[seq_len(length(resType))] <- -1
            } else {
                if (sum(rownames(NEMlist$fc) %in%
                        names(which(EtoS[, 2] == i))) == 1) {
                    data.tmp <-
                        t(as.matrix(
                            NEMlist$fc[rownames(NEMlist$fc) %in%
                                           names(which(EtoS[, 2] == i)), ]))
                    rownames(data.tmp) <-
                        rownames(NEMlist$fc)[
                            rownames(NEMlist$fc) %in%
                                names(which(EtoS[, 2] == i))]
                } else {
                    data.tmp <-
                        NEMlist$fc[rownames(NEMlist$fc) %in%
                                       names(which(EtoS[, 2] == i)), ]
                }
                resVec <- sum(abs(cor(SCompMat[i, ], t(data.tmp),
                                      method = method)))
                for (j in seq_len(ncol(data.tmp))) { # parallel this!

                    if (verbose) {
                        cat('\r',
                            paste(floor(((i-1)*ncol(data.tmp) + j)/
                                            (ncol(getSignals(CNOlist)[[1]])*
                                                 ncol(data.tmp))*100), "%",
                                  sep = ""))
                    }

                    sgene <- SCompMat[i, ]
                    mem <- sgene[j]
                    if (mem == 0) {
                        resType[j] <- 1
                        resType[(j+ncol(data.tmp))] <- 1
                        sgene[j] <- 1
                        resMat[j] <- sum(abs(cor(sgene, t(data.tmp),
                                                 method = method)))
                        sgene[j] <- -1
                        resMat[(j+ncol(data.tmp))] <-
                            sum(abs(cor(sgene, t(data.tmp),
                                        method = method)))
                    }
                    if (mem == 1) {
                        resType[j] <- -1
                        resType[(j+ncol(data.tmp))] <- 1
                        sgene[j] <- 0
                        resMat[j] <- sum(abs(cor(sgene, t(data.tmp),
                                                 method = method)))
                        sgene[j] <- -1
                        resMat[(j+ncol(data.tmp))] <-
                            sum(abs(cor(sgene,
                                        t(data.tmp),
                                        method = method)))
                    }
                    if (mem == -1) {
                        resType[j] <- 1
                        resType[(j+ncol(data.tmp))] <- -1
                        sgene[j] <- 1
                        resMat[j] <- sum(abs(cor(sgene, t(data.tmp),
                                                 method = method)))
                        sgene[j] <- 0
                        resMat[(j+ncol(data.tmp))] <-
                            sum(abs(cor(sgene,
                                        t(data.tmp), method = method)))
                    }
                }
            }
            return(list(resMat = resMat, resType = resType, resVec = resVec))
        }

        if (!is.null(parallel[1])) {
            if (is.list(parallel)) {
                if (length(parallel[[1]]) != length(parallel[[2]])) {
                    stop("The nodes (second list object in parallel) and the
number of cores used on every node (first list object in parallel) must be the
same.") }
                hosts <- character()
                for (i in seq_len(length(parallel[[1]]))) {
                    hosts <- c(hosts, rep(parallel[[2]][i], parallel[[1]][i]))
                }
                hosts <- as.list(hosts)
                sfInit(parallel=TRUE, socketHosts=hosts)
            } else {
                sfInit(parallel=TRUE, cpus=parallel, type = "SOCK")
            }
            sfLibrary("CellNOptR")
        }

        if (!is.null(parallel[1])) {
            resTmp <- sfLapply(as.list(seq_len(nrow(resMat))), checkSgene)
            sfStop()
        } else {
            resTmp <- lapply(as.list(seq_len(nrow(resMat))), checkSgene)
        }

        for (i in seq_len(nrow(resMat))) {
            resMat[i, ] <- resTmp[[i]]$resMat
            resType[i, ] <- resTmp[[i]]$resType
            resVec[i] <- resTmp[[i]]$resVec[1]
        }
        resType <- resType*(-1)
        resDiff <- (resVec - resMat)/nrow(NEMlist$fc)
        colnames(resDiff) <- c(colnames(NEMlist$fc), colnames(NEMlist$fc))
        rownames(resDiff) <- colnames(getSignals(CNOlist)[[1]])
        resDiff1 <- cbind(resDiff[, seq_len(ncol(NEMlist$fc))], max(resDiff),
                          resDiff[, (ncol(NEMlist$fc)+1):(2*ncol(NEMlist$fc))])

        p1 <- HeatmapOP(resDiff1, Rowv = FALSE, Colv = FALSE, main = main,
                        sub = sub, bordercol = "grey", ...)

        resDiff2 <- cbind(resDiff[, seq_len(ncol(NEMlist$fc))], min(resDiff),
                          resDiff[, (ncol(NEMlist$fc)+1):(2*ncol(NEMlist$fc))])
        resType2 <- cbind(resType[, seq_len(ncol(NEMlist$fc))], min(resType),
                          resType[, (ncol(NEMlist$fc)+1):(2*ncol(NEMlist$fc))])
        resDiff2[resDiff2 > 0] <- 0

        p2 <- HeatmapOP(resDiff2, Colv = FALSE, Rowv = FALSE, main = main,
                        sub = sub, bordercol = "grey", ...)

        resDiff3 <- resDiff2*resType2

        p3 <- HeatmapOP(resDiff3, Colv = FALSE, Rowv = FALSE, main = main,
                        sub = sub, bordercol = "grey", ...)
        res.breaks <-
            seq(-max(abs(min(resDiff3, na.rm = TRUE)),
                     abs(max(resDiff3, na.rm = TRUE))),
                max(abs(min(resDiff3, na.rm = TRUE)), abs(max(resDiff3,
                                                              na.rm = TRUE))),
                (max(abs(min(resDiff3, na.rm = TRUE)), abs(max(resDiff3,
                                                               na.rm = TRUE))) -
                     -max(abs(min(resDiff3, na.rm = TRUE)),
                          abs(max(resDiff3,
                                  na.rm = TRUE))))/100)

        p1 <- HeatmapOP(resDiff3[, seq_len(ncol(NEMlist$fc))],
                        bordercol = "grey", Colv = FALSE, Rowv = FALSE,
                        main = "residuals (positive effects)", sub = "",
                        xrot = "60", breaks = res.breaks, colorkey = NULL)

        p2 <- HeatmapOP(resDiff3[, (ncol(NEMlist$fc)+2):(2*ncol(NEMlist$fc)+1)],
                        bordercol = "grey", Colv = FALSE, Rowv = FALSE,
                        main = "residuals (negative effects)", sub = "",
                        xrot = "60", breaks = res.breaks)

        if (verbose) {
            print(p1, position=c(0, 0, .48, 1), more=TRUE)
            print(p2, position=c(.48, 0, 1, 1))
        }
        if (cut & all(is.na(resDiff) == FALSE)) {
            if (sum(rowSums(abs(resDiff1)) == 0) > 0) {
                resDiff1 <-
                    resDiff1[!rowSums(abs(resDiff1)) == 0, ]
            }
            if (sum(colSums(abs(resDiff1)) == 0) > 0) {
                resDiff1 <-
                    resDiff1[, !colSums(abs(resDiff1)) == 0]
            }
            if (sum(rowSums(abs(resDiff2)) == 0) > 0) {
                resDiff2 <-
                    resDiff2[!rowSums(abs(resDiff2)) == 0, ]
            }
            if (sum(colSums(abs(resDiff2)) == 0) > 0) {
                resDiff2 <-
                    resDiff2[, !colSums(abs(resDiff2)) == 0]
            }
            if (sum(rowSums(abs(resDiff3)) == 0) > 0) {
                resDiff3 <-
                    resDiff3[!rowSums(abs(resDiff3)) == 0, ]
            }
            if (sum(colSums(abs(resDiff3)) == 0) > 0) {
                resDiff3 <-
                    resDiff3[, !colSums(abs(resDiff3)) == 0]
            }
        }
        return(list(resDiff1 = resDiff1, resDiff2 = resDiff2,
                    resDiff3 = resDiff3))
    }
#' Reduce graph
#'
#' reduces the size of a graph, if possible, to an equivalent sub-graph
#' @param bString binary vector indicating the sub-graph given a model
#' @param model Model object including the search space, if available.
#' See CellNOptR::preprocessing.
#' @param CNOlist CNOlist object (see package CellNOptR), if available.
#' @author Martin Pirkl
#' @return equivalent sub-graph denoted by a bString
#' @export
#' @examples
#' sifMatrix <- rbind(c("A", 1, "B"), c("A", 1, "C"), c("B", 1, "D"),
#' c("C", 1, "D"))
#' temp.file <- tempfile(pattern="interaction",fileext=".sif")
#' write.table(sifMatrix, file = temp.file, sep = "\t",
#' row.names = FALSE, col.names = FALSE,
#' quote = FALSE)
#' PKN <- CellNOptR::readSIF(temp.file)
#' CNOlist <- dummyCNOlist("A", c("B","C","D"), maxStim = 1, maxInhibit = 2,
#' signal = c("A", "B","C","D"))
#' model <- CellNOptR::preprocessing(CNOlist, PKN, maxInputsPerGate = 100)
#' bString <- reduceGraph(rep(1, length(model$reacID)), model, CNOlist)
reduceGraph <-
    function(bString, model, CNOlist) {
        if (any(bString != 0)) {
            stimuli <- colnames(getStimuli(CNOlist))
            graph <- model$reacID[bString == 1]
            tmp <- unlist(strsplit(graph, "="))
            tmp <- unlist(strsplit(tmp, "\\+"))
            tmp <- unique(gsub("!", "", tmp))
            for (i in tmp) {
                if (!(i %in% stimuli) &
                    length(grep(paste("=", i, sep = ""), graph)) == 0) {
                    get <- grep(paste("^", i, sep = ""), graph)
                    if (length(get) > 0) {
                        graph <- graph[-get]
                    }
                }
            }
            bString <- numeric(length(bString))
            bString[model$reacID %in% graph] <- 1
        }
        bString <- absorption(bString, model)
        return(bString)
    }
#' Simulate states
#'
#' simulates the activation pattern (truth table) of a hyper-graph and
#' annotated perturbation experiments
#' @param CNOlist CNOlist object (see package CellNOptR), if available.
#' @param model Model object including the search space, if available.
#' See CellNOptR::preprocessing.
#' @param bString binary vector denoting the sub-graph given model
#' @param NEMlist NEMlist object only for devel
#' @author Martin Pirkl
#' @return return the truth tables for certain perturbation experiments
#' as a numeric matrix
#' @export
#' @import
#' CellNOptR
#' matrixStats
#' @examples
#' sifMatrix <- rbind(c("A", 1, "B"), c("A", 1, "C"), c("B", 1, "D"),
#' c("C", 1, "D"))
#' temp.file <- tempfile(pattern="interaction",fileext=".sif")
#' write.table(sifMatrix, file = temp.file, sep = "\t",
#' row.names = FALSE, col.names = FALSE,
#' quote = FALSE)
#' PKN <- CellNOptR::readSIF(temp.file)
#' CNOlist <- dummyCNOlist("A", c("B","C","D"), maxStim = 1, maxInhibit = 2,
#' signal = c("A", "B","C","D"))
#' model <- CellNOptR::preprocessing(CNOlist, PKN, maxInputsPerGate = 100)
#' states <- simulateStatesRecursive(CNOlist, model,
#' rep(1, length(model$reacID)))
simulateStatesRecursive <-
    function(CNOlist, model, bString, NEMlist = NULL) {
        getState <- function(CNOlist, node, signalStates, graph,
                             children = NULL, NEMlist = NULL) {
            graphCut <- graph[grep(paste("=", node, "$", sep = ""), graph)]
            if (length(graphCut) == 0) {
                signalStates[, node] <- 0
            } else {
                sop <- numeric(nrow(signalStates))
                children2 <- gsub("!", "", children)
                for (i in graphCut) {
                    parents <- gsub("=.*$", "", unlist(strsplit(i, "\\+")))
                    if (length(parents) == 0) {
                        pob <- rep(0, nrow(signalStates))
                    } else {
                        pob <- rep(1, nrow(signalStates))
                    }
                    for (j in parents) {
                        j2 <- gsub("!", "", j)
                        if (any(is.na(signalStates[, j2]) == TRUE)) {
                            if (j %in% j2) {
                                node2 <- node
                                add1 <- 0
                            } else {
                                node2 <- paste("!", node, sep = "")
                                add1 <- 1
                            }
                            if (j2 %in% children2) {
                                ## this speeds up the process and will
                                subGraph <- graph
                                subGraph <-
                                    subGraph[
                                        -grep(paste(".*=", node, "|.*", j2,
                                                    ".*=.*", sep = ""),
                                              subGraph)]
                                signalStatesTmp <-
                                    getState(CNOlist = CNOlist,
                                             node = j2,
                                             signalStates = signalStates,
                                             graph = subGraph,
                                             children = children2[
                                                 !children2 %in% node],
                                             NEMlist)
                                if (add1 == 0) {
                                    pobMult <- signalStatesTmp[, j2]
                                } else {
                                    pobMult <- add1 - signalStatesTmp[, j2]
                                }
                            } else {
                                signalStates <-
                                    getState(CNOlist = CNOlist, node = j2,
                                             signalStates = signalStates,
                                             graph = graph,
                                             children =
                                                 unique(c(children, node2)),
                                             NEMlist)
                                if (add1 == 0) {
                                    pobMult <- signalStates[, j2]
                                } else {
                                    pobMult <- add1 - signalStates[, j2]
                                }
                            }
                            pob <- pob*pobMult
                        } else {
                            if (j %in% j2) {
                                add1 <- 0
                            } else {
                                add1 <- 1
                            }
                            if (add1 == 0) {
                                pobMult <- signalStates[, j2]
                            } else {
                                pobMult <- add1 - signalStates[, j2]
                            }
                            pob <- pob*pobMult
                        }
                        if (max(pob, na.rm = TRUE) == 0) { break() }
                    }
                    sop <- sop + pob
                    if (min(sop, na.rm = TRUE) > 0) { break() }
                }
                sop[sop > 0] <- 1
                if (node %in% colnames(getInhibitors(CNOlist))) {
                    sop <- sop*(1 - getInhibitors(CNOlist)[, node])
                }
                if (node %in% colnames(getStimuli(CNOlist))) {
                    sop <- max(sop, getStimuli(CNOlist)[, node])
                }
                signalStates[, node] <- sop
            }
            return(signalStates)
        }
        bString <- reduceGraph(bString, model, CNOlist)
        stimuli <- colnames(getStimuli(CNOlist))
        signals <-
            sort(c(colnames(getInhibitors(CNOlist)),
                   model$namesSpecies[
                       !model$namesSpecies %in%
                           c(stimuli,
                             colnames(getInhibitors(CNOlist)))]))
        graph0 <- model$reacID[bString == 1]
        stimuliStates <- getStimuli(CNOlist)
        if (!is.null(NEMlist$signalStates[1])) {
            signalStates <- NEMlist$signalStates
        } else {
            signalStates <- matrix(NA, nrow = nrow(getSignals(CNOlist)[[2]]),
                                   ncol = length(signals))
            rownames(signalStates) <- rownames(getSignals(CNOlist)[[2]])
            colnames(signalStates) <- signals
            signalStates <- cbind(stimuliStates, signalStates)
        }
        for (k in signals) {
            if (sum(is.na(signalStates[, k]) == TRUE) ==
                length(signalStates[, k])) {
                signalStates <- getState(CNOlist = CNOlist, node = k,
                                         signalStates = signalStates,
                                         graph = graph0, children = NULL,
                                         NEMlist)
            }
        }
        signalStates <- signalStates[, colnames(signalStates) %in%
                                         colnames(getSignals(CNOlist)[[1]])]
        if (ncol(getSignals(CNOlist)[[1]]) != 1) {
            signalStates <- signalStates[, order(colnames(signalStates))]
        } else {
            signalStates <- as.matrix(signalStates)
            colnames(signalStates) <- colnames(getSignals(CNOlist)[[1]])
        }
        return(signalStates = signalStates)
    }
#' transitive closure
#'
#' calculates transitive closure of a hyper-graph
#' @param g hyper-graph in normal form
#' @param max.iter maximal iteration till convergence
#' @param verbose TRUE for verbose output
#' @author Martin Pirkl
#' @return transitive closure in normal form
#' @export
#' @examples
#' g <- c("A=B", "B=C")
#' gclose <- transClose(g)
transClose <-
    function(g, max.iter = NULL, verbose = FALSE) {
        v <- unique(gsub("!", "", unlist(strsplit(unlist(strsplit(g, "=")),
                                                  "\\+"))))
        if (is.null(max.iter[1])) {
            h <- getHierarchy(g)
            max.iter <- length(h) - 2 # should be sufficient
        }
        if (verbose) {
            message("maximum iterations: ", max.iter)
        }
        g.out <- unique(gsub(".*=", "", g))
        g.closed <- g
        for (iter in seq_len(max.iter)) {
            g.old <- g.closed

            if (verbose) {
                cat('\r', paste("iteration: ", iter, sep = ""))
            }
            for (i in g.closed) {
                input <-
                    gsub("!", "", unlist(strsplit(unlist(strsplit(i, "="))[1],
                                                  "\\+")))
                input <- intersect(input, g.out)
                output <- gsub(".*=", "", i)
                if (length(input) == 0) { next() }
                for (j in unique(input)) {
                    if (j %in% unlist(strsplit(unlist(strsplit(i, "="))[1],
                                               "\\+"))) {
                        for (k in gsub("=.*", "",
                                       g[grep(paste("=", j, sep = ""),
                                              g)])) {
                            g.closed <- c(g.closed, gsub(j, k, i))
                        }
                    } else {
                        literals <- list()
                        count <- 0
                        for (k in unique(gsub("=.*", "",
                                              g[grep(paste("=", j,
                                                           sep = ""), g)]))) {
                            count <- count + 1
                            literals[[count]] <-
                                gsub("!!", "", paste("!",
                                                     unlist(strsplit(k, "\\+")),
                                                     sep = ""))
                        }
                        combis <- expand.grid(literals)
                        combis <- apply(combis, c(1,2), as.character)
                        for (k in seq_len(nrow(combis))) {
                            g.closed <-
                                c(g.closed, gsub(paste("!", j, sep = ""),
                                                 paste(combis[k, ],
                                                       collapse = "+"), i))
                        }
                    }
                }
            }
            g.closed <- unique(g.closed)
            if (all(g.closed %in% g.old)) {
                if (verbose) {
                    cat("\n")
                    message("successfull convergence")
                }
                break()
            }
        }
        if (verbose) {
            cat("\n")
        }
        g.closed <- unique(g.closed)
        for (j in seq_len(length(g.closed))) {
            i <- g.closed[j]
            input <- unlist(strsplit(i, "="))
            output <- input[2]
            input <- unlist(strsplit(input[1], "\\+"))
            input <- unique(input)
            g.closed[j] <- paste(paste(input, collapse = "+"),
                                 output, sep = "=")
        }
        if (length(grep(paste(paste(v, ".*", v, ".*=", sep = ""),
                              collapse = "|"), g.closed)) > 0) {
            g.closed <- g.closed[-grep(paste(paste(v, ".*", v, ".*=", sep = ""),
                                             collapse = "|"), g.closed)]
        }
        return(g.closed)
    }
#' transitive reduction
#'
#' calculates transitive reduction of a hyper-graph in normal form
#' @param g hyper-graph in normal form
#' @param max.iter maximal number of iterations till convergence
#' @param verbose TRUE for verbose output
#' @author Martin Pirkl
#' @return transitive reduction of the hyper-graph in normal form
#' @export
#' @examples
#' g <- c("A=B", "A=C", "B=C", "B=D", "!A=D")
#' gred <- transRed(g)
transRed <-
    function(g, max.iter = NULL, verbose = FALSE) {
        v <- unique(gsub("!", "", unlist(strsplit(unlist(strsplit(g, "=")),
                                                  "\\+"))))
        if (is.null(max.iter[1])) {
            max.iter <- length(v) - 2
        }
        a <- dnf2adj(g)
        g2 <- g
        h <- getHierarchy(g2)
        if (length(h) > 2) {
            for (i in seq_len((length(h)-2))) {
                for (j in h[[i]]) {
                    for (k in (i+2):length(h)) {
                        for (l in h[[k]]) {
                            if (length(grep(paste(".*", j,
                                                  ".*=", l, sep = ""), g2)) !=
                                0) {
                                if (length(grep(paste(".*=", l,
                                                      sep = ""), g2)) >
                                    1) {
                                    g2 <- g2[-grep(paste(".*", j, ".*=", l,
                                                         sep = ""), g2)]
                                }
                            }
                        }
                    }
                }
            }
        }
        g3 <- transClose(g2, max.iter)
        if (sum(g %in% g3) > 0) {
            g4 <- g[!g %in% g3]
        }
        g5 <- unique(c(g2, g4))
        return(g5)
    }
#' validate graph
#'
#' plotting the observed differential effects of an effect reporter and the
#' expected differential effects of the regulating signalling gene
#' @param CNOlist CNOlist object (see package CellNOptR), if available.
#' @param fc m x l matrix of foldchanges of gene expression values or
#' equivalent input
#' (normalized pvalues, logodds, ...) for m E-genes and l contrasts. If left
#' NULL, the gene expression
#' data is used to calculate naive foldchanges.
#' @param expression Optional normalized m x l matrix of gene expression data
#' for m E-genes and l experiments.
#' @param model Model object including the search space, if available.
#' See CellNOptR::preprocessing.
#' @param bString Binary string denoting the hyper-graph.
#' @param Egenes Maximal number of visualized E-genes.
#' @param Sgene Integer denoting the S-gene. See
#' colnames(getSignals(CNOlist)[[1]]) to match integer with S-gene name.
#' @param parameters parameters for discrete case (not recommended);
#' has to be a list with entries cutOffs and scoring:
#' cutOffs = c(a,b,c) with a (cutoff for real zeros),
#' b (cutoff for real effects),
#' c = -1 for normal scoring, c between 0 and
#' 1 for keeping only relevant % of E-genes,
#' between -1 and 0 for keeping only a specific quantile of E-genes,
#' and c > 1 for keeping the top c E-genes;
#' scoring = c(a,b,c) with a (weight for real effects),
#' c (weight for real zeros),
#' b (multiplicator for effects/zeros between a and c);
#' @param plot Plot the heatmap. If FALSE, only corresponding
#' information is printed.
#' @param disc Discretize the data.
#' @param affyIds Experimental. Turn Affymetrix Ids into HGNC
#' gene symbols.
#' @param relFit if TRUE a relative fit for each
#' E-gene is computed (not recommended)
#' @param xrot See function epiNEM::HeatmapOP
#' @param Rowv See function epiNEM::HeatmapOP
#' @param Colv See function epiNEM::HeatmapOP
#' @param dendrogram See function epiNEM::HeatmapOP
#' @param soft if TRUE, assigns weights to the expected pattern
#' @param colSideColors See function epiNEM::HeatmapOP
#' @param affychip Define Affymetrix chip used to generate the data
#' (optional and experimental).
#' @param method Scoring method can be "cosine", a correlation,
#' or a distance measure. See ?cor and ?dist for details.
#' @param ranks if TRUE, turns data into ranks
#' @param breaks See function epiNEM::HeatmapOP
#' @param col See function epiNEM::HeatmapOP
#' @param sizeFac Size factor penelizing the hyper-graph size.
#' @param order Order by "rank", "name" or "none"
#' @param verbose TRUE for verbose output
#' @param ... additional arguments for epiNEM::HeatmapOP
#' @author Martin Pirkl
#' @return lattice object with matrix information
#' @export
#' @importFrom utils glob2rx
#' @import
#' CellNOptR
#' stats
#' RColorBrewer
#' epiNEM
#' matrixStats
#' @examples
#' sifMatrix <- rbind(c("A", 1, "B"), c("A", 1, "C"), c("B", 1, "D"),
#' c("C", 1, "D"))
#' temp.file <- tempfile(pattern="interaction",fileext=".sif")
#' write.table(sifMatrix, file = temp.file, sep = "\t",
#' row.names = FALSE, col.names = FALSE,
#' quote = FALSE)
#' PKN <- CellNOptR::readSIF(temp.file)
#' CNOlist <- dummyCNOlist("A", c("B","C","D"), maxStim = 1, maxInhibit = 2,
#' signal = c("A", "B","C","D"))
#' model <- CellNOptR::preprocessing(CNOlist, PKN, maxInputsPerGate = 100)
#' expression <- matrix(rnorm(nrow(slot(CNOlist, "cues"))*10), 10,
#' nrow(slot(CNOlist, "cues")))
#' fc <- computeFc(CNOlist, expression)
#' initBstring <- rep(0, length(model$reacID))
#' res <- bnem(search = "greedy", CNOlist = CNOlist, fc = fc,
#' model = model, parallel = NULL, initBstring = initBstring, draw = FALSE,
#' verbose = FALSE, maxSteps = Inf)
#' rownames(fc) <- seq_len(nrow(fc))
#' val <- validateGraph(CNOlist = CNOlist, fc = fc, model = model,
#' bString = res$bString, Egenes = 10, Sgene = 4)
validateGraph <-
    function(CNOlist, fc=NULL, expression=NULL, model, bString,
             Egenes = 25, Sgene = 1,
             parameters = list(cutOffs = c(0,1,0), scoring = c(0.1,0.2,0.9)),
             plot = TRUE,
             disc = 0, affyIds = TRUE, relFit = FALSE,
             xrot = 25, Rowv = FALSE, Colv = FALSE,
             dendrogram = "none", soft = TRUE, colSideColors = NULL,
             affychip = "hgu133plus2", method = "s", ranks = FALSE,
             breaks = NULL, col = "RdYlGn", sizeFac = 10^-10,
             order = "rank", verbose = TRUE, ...) {
        approach <- "fc"
        if (is.null(fc[1])) { approach <- "abs" }
        if (is.null(fc[1]) & is.null(expression[1])) {
            stop("please either provide a matrix of foldchanges 'fc' ",
                 "or a matrix of expression values 'expression'")
        }
        csc <- TRUE
        colnames <- "bio"
        complete <- FALSE
        sim <- 0

        NEMlist <- list()
        NEMlist$fc <- fc
        NEMlist$expression <- expression

        myCN2bioCN <- function(x, stimuli, inhibitors) {
            y <- gsub("_vs_", ") vs (", x)
            for (i in inhibitors) {
                y <- gsub(i, paste(i, "\\-", sep = ""), y)
            }
            for (i in stimuli) {
                y <- gsub(i, paste(i, "\\+", sep = ""), y)
            }
            y <- gsub("Ctrl", "control", paste("(", gsub("_", ",", y), ")",
                                               sep = ""))
            return(y)
        }
        genes.upper <- c("APC", "ATF2", "BIRC2", "BIRC3", "CASP4", "CASP8",
                         "CFLAR", "CHUK", "CTNNB1", "DKK1", "DKK4", "FLASH",
                         "IKBKB", "IKBKG", "JUN", "MAP2K1", "MAP3K14",
                         "MAP3K7", "MAPK8", "PIK3CA", "RBCK1", "RELA",
                         "RIPK1", "RIPK3", "RNF31", "SHARPIN", "TAB2",
                         "TCF4", "TCF7L2", "TNFRSF10A", "TNFRSF10B",
                         "TNFRSF1A", "TNIK", "TRAF2", "USP2", "WLS",
                         "WNT11", "WNT5A", "TNFa", "TRAIL")
        genes.lower <- c("Apc", "Atf2", "cIap1", "cIap2", "Casp4", "Casp8",
                         "c-Flip", "Ikka", "Beta-Cat.", "Dkk1", "Dkk4",
                         "Casp8ap2", "Ikkb", "Nemo", "cJun", "Mekk", "Nik",
                         "Tak1", "Jnk", "Pi3k", "Hoil1", "RelA", "Rip1",
                         "Rip3", "Hoip", "Sharpin", "Tab2", "fake", "Tcf4",
                         "Dr4", "Dr5", "Tnfr1", "Tnik", "Traf2", "Usp2",
                         "Evi", "Wnt11", "Wnt5A", "Tnfa", "Trail")
        gene2protein <- function(genes, strict = FALSE) {
            if (strict) {
                gene2prot <- cbind(
                    glob2rx(genes.upper),
                    genes.lower
                )
            } else {
                gene2prot <- cbind(
                    genes.upper,
                    genes.lower
                )
            }
            for (i in seq_len(nrow(gene2prot))) {
                genes <- gsub(gene2prot[i, 1], gene2prot[i, 2], genes)
            }
            return(genes)
        }

        protein2gene <- function(proteins, strict = FALSE) {
            if (strict) {
                gene2prot <- cbind(
                    genes.upper,
                    glob2rx(genes.lower)
                )
            } else {
                gene2prot <- cbind(
                    genes.upper,
                    genes.lower
                )
            }
            for (i in seq_len(nrow(gene2prot))) {
                proteins <- gsub(gene2prot[i, 2], gene2prot[i, 1], proteins)
            }
            return(proteins)
        }

        colSideColorsSave <- NULL
        bad.data <- FALSE
        errorMat <- function() {
            error.mat <- matrix(0, nrow = 50, ncol = (7*3+8))
            error.mat[seq_len(10), c(2:4, 6:8, 10:11,
                                     14:15, 18:20, 22:24, 26:28)] <- 3.5
            error.mat[11:20, c(2,4, 6,8, 10,12,
                               14,16, 18,20, 23, 26,28)] <- 3.5
            error.mat[21:30, c(2:4, 6:8, 10,12, 14,16,
                               18:20, 23, 26:28)] <- 3.5
            error.mat[31:40, c(2,4, 6,8, 10,12, 14,16,
                               18,20, 23, 26,28)] <- 3.5
            error.mat[41:50, c(2:4, 6,8, 10:11, 14:15,
                               18,20, 23, 26,28)] <- 3.5
            error.mat <- cbind(error.mat[, seq_len(13)],
                               matrix(0, nrow = 50, ncol = 5),
                               error.mat[, 14:29])
            error.mat <- rbind(matrix(0, nrow = 10,
                                      ncol = ncol(error.mat)),
                               error.mat, matrix(0, nrow = 10,
                                                 ncol = ncol(error.mat)),
                               error.mat, matrix(0, nrow = 10,
                                                 ncol = ncol(error.mat)),
                               error.mat, matrix(0, nrow = 10,
                                                 ncol = ncol(error.mat)),
                               error.mat, matrix(0, nrow = 10,
                                                 ncol = ncol(error.mat)))
            rownames(error.mat) <- seq_len(250)
            colnames(error.mat) <- seq_len(((7*3+8)+5))
            error.mat <- error.mat
            error.mat <- error.mat
            error.mat <- error.mat[rep(seq_len(nrow(error.mat)), each = 1),
                                   rep(seq_len(ncol(error.mat)), each = 5)]
            error.mat <- smoothMatrix(error.mat, 5, torus = FALSE)
            return(error.mat)
        }
        CNOlist <- checkCNOlist(CNOlist)
        NEMlist <- checkNEMlist(NEMlist = NEMlist, CNOlist = CNOlist,
                                parameters = parameters, approach = approach,
                                method = method)
        tmp <- computeScoreNemT1(CNOlist, model = model, bString, NAFac = 1,
                                 approach = approach, NEMlist = NEMlist,
                                 tellme = 1, parameters = parameters,
                                 sim = sim, relFit = relFit, method = method,
                                 sizeFac = sizeFac, verbose = FALSE)
        EtoS <- tmp$EtoS
        if (verbose) {
            message(Sgene, ".", colnames(getSignals(CNOlist)[[1]])[Sgene],
                    ": ", sum(EtoS[, 2] == Sgene))
            message("Activated: ", sum(EtoS[, 2] == Sgene & EtoS[, 3] == 1))
            message("Inhibited: ", sum(EtoS[, 2] == Sgene &
                                           EtoS[, 3] == -1))
            message("Summary Score:")
            message(summary(EtoS[EtoS[, 2] == Sgene, 4]))
            dups <- sum(duplicated(rownames(EtoS)) == TRUE)
            if (dups > 0) {
                used <- length(unique(rownames(EtoS)))
            } else {
                used <- nrow(EtoS)
            }
            message("Unique genes used: ", (used), " (",
                    round((used/nrow(NEMlist$fc))*100, 2), " %)")
            message("Duplicated genes: ", dups)
            message("Overall fit:")
            message(summary(EtoS[, 4]))
        }
        indexList <- NULL
        if (is.null(indexList[1]) == TRUE) {
            indexList = indexFinder(CNOlist, model)
        }
        modelCut = cutModel(model, bString)
        if (sim == 0) {
            simResults <-
                simulateStatesRecursive(CNOlist = CNOlist,
                                        model = modelCut,
                                        bString =
                                            (numeric(length(modelCut$reacID)) +
                                                 1))
        }
        if (sim == 1) {
            simResults <-
                simulateStatesRecursiveAdd(CNOlist = CNOlist, model = modelCut,
                                           bString =
                                               (numeric(
                                                   length(modelCut$reacID)) +
                                                    1))
        }
        rownames(simResults) <- seq_len(nrow(simResults))
        simResults <- simResults[, colnames(simResults) %in%
                                     colnames(getSignals(CNOlist)[[1]])]
        SCompMat <- computeFc(CNOlist, t(simResults))
        SCompMat <- SCompMat[, colnames(NEMlist$fc)]

        if (parameters$cutOffs[3] == -1) {
            method <- checkMethod(method)
            S.mat <- SCompMat
            ## do median polish over gene clusters
            data.med <- NEMlist$fc[seq_len(ncol(getSignals(CNOlist)[[2]])), ]*0
            Epos <- EtoS[order(rownames(EtoS)), seq_len(2)]
            for (i in seq_len(ncol(getSignals(CNOlist)[[1]]))) {
                tmp <-
                    medpolish(rbind(
                        NEMlist$fc[Epos[Epos[, 2] == i,
                                        1], ],
                        NEMlist$fc[Epos[Epos[, 2] ==
                                            (i+ncol(getSignals(CNOlist)[[2]])),
                                        1], ]), trace.iter=FALSE)
                data.med[i, ] <- tmp$col
            }
            E.mat <- data.med
            E.mat[is.na(E.mat)] <- 0
            tmp <- which(rowSums(E.mat) != 0)
            E.mat <- E.mat[rowSums(E.mat) != 0, ]
            rownames(E.mat) <- rownames(S.mat)[tmp]
            NEMlist$fc <- E.mat
            if (parameters$scoring[1] == 0) {
                S.mat[S.mat == 0] <- NA
            }
            if ("pearson" %in% method) {
                cosine.sim <- -t(cor(t(S.mat), t(E.mat), method = "p",
                                     use = "pairwise.complete.obs"))
            }
            if ("spearman" %in% method) {
                S.mat.ranks <- apply(S.mat, 1, rank)
                cosine.sim <- -t(cor(S.mat.ranks, t(E.mat), method = "p",
                                     use = "pairwise.complete.obs"))
            }
            cosine.sim[is.na(cosine.sim)] <- 0
            MSEAfc <- cosine.sim
            MSEIfc <- -cosine.sim
            R <- cbind(MSEAfc, MSEIfc)
            R[is.na(R)] <- max(R[!is.na(R)])
            MSEE <- matrixStats::rowMins(R)
        }

        ## matrix visualisation for egenes fitted:
        if ("fc" %in% approach) {
            check.data <- NEMlist$fc
            check.model <- SCompMat
            rownames(check.model) <- colnames(simResults)
        }
        if ("abs" %in% approach) {
            check.data <- NEMlist$expression # here the $norm is needed
            check.model <- simResults
            colnames(check.model) <- colnames(getSignals(CNOlist)[[2]])
        }

        Egenes <- Egenes

        Egenes <- min(Egenes, sum(EtoS[, 2] == Sgene))

        if (Egenes == 0) {
            mainlab <- paste("Regulated by ",
                             rownames(check.model)[Sgene], "\n", sep = "")
            if (plot) {
                print(HeatmapOP(errorMat(), main = mainlab, sub = "",
                                Colv = FALSE, Rowv = FALSE, col = "RdBu",
                                coln = 12, breaks = seq(0,8, 0.1)), ...)
            }
            genesInfo <- as.matrix(0)
            rownames(genesInfo) <- "dummy"
            return(list(genesInfo = genesInfo, data = genesInfo))
        }

        if (complete) {
            egenefit <- matrix(0, nrow = (sum(EtoS[, 2] == Sgene)+1),
                               ncol = ncol(check.data))
        } else {
            egenefit <- matrix(0, nrow = (Egenes+1), ncol = ncol(check.data))
        }

        egenefit[1,] <- check.model[Sgene, ]
        rownames(egenefit) <- seq_len(nrow(egenefit))
        rownames(egenefit)[1] <- rownames(check.model)[Sgene]
        colnames(egenefit) <- seq_len(ncol(egenefit))
        colnames(egenefit) <- colnames(check.data)
        if (complete) {
            activatedEgenes <- numeric(sum(EtoS[, 2] == Sgene)+1)
        } else {
            activatedEgenes <- numeric(Egenes+1)
        }

        count <- 0
        for (i in seq_len(nrow(EtoS))) {
            if (EtoS[i, 2] == Sgene) {
                egenefit[count+2,] <-
                    check.data[rownames(check.data) %in%
                                   rownames(EtoS)[i], ]
                rownames(egenefit)[count+2] <- rownames(EtoS)[i]
                if (EtoS[i, 3] == 1) {
                    activatedEgenes[count+2] <- 1
                }
                count <- count + 1
            }
            if (count >= Egenes & !complete) { break() }
        }

        Egenes <- count

        if (affyIds == FALSE) {
            temp <-
                as.vector(unlist(mget(unique(rownames(egenefit)[-1]),
                                      get(paste(affychip, "SYMBOL",
                                                sep = "")))))
            temp2 <- rownames(egenefit)[-1]
            if (sum(is.na(temp) == TRUE) > 0) {
                temp[is.na(temp)] <- temp2[is.na(temp)]
            }
            rownames(egenefit)[-1] <- temp
        }

        rownames(egenefit)[is.na(rownames(egenefit))] <- "NA"
        count <- 0
        if (min(egenefit) != max(egenefit)) {
            if (disc == 1) {
                egenefit[1, ] <- disc(egenefit[1, ], 0.5)
                for (i in 2:nrow(egenefit)) {
                    if (parameters$cutOffs[2] == 0) {
                        save.model <- egenefit[1, ]
                        egenefit[1, ] <- save.model
                        real.breaks <-
                            seq(-max(abs(min(egenefit)),
                                     abs(max(egenefit))),
                                max(abs(min(egenefit)),abs(max(egenefit))),
                                0.1)
                        if (length(real.breaks) > 101) {
                            real.breaks <-
                                real.breaks[
                                    c((floor(length(
                                        real.breaks)/2)-50):
                                          floor(length(real.breaks)/2),
                                      (floor(length(real.breaks)/2)+1):
                                          (floor(length(real.breaks)/2)+50))]
                        }
                    } else {
                        if (activatedEgenes[i] == 1) {
                            onePosI <-
                                c(which(egenefit[1, ] == 1 & egenefit[i, ] >
                                            parameters$cutOffs[2]),
                                  which(egenefit[1, ] == 0 & egenefit[i, ] >
                                            parameters$cutOffs[2]),
                                  which(egenefit[1, ] == -1 & egenefit[i, ] >
                                            parameters$cutOffs[2]))
                            onePosII <-
                                which(egenefit[1, ] == 1 & egenefit[i, ] >
                                          parameters$cutOffs[1] &
                                          egenefit[i, ] <=
                                          parameters$cutOffs[2])
                            oneNegI <-
                                c(which(egenefit[1, ] == -1 & egenefit[i, ] <
                                            -parameters$cutOffs[2]),
                                  which(egenefit[1, ] == 0 & egenefit[i, ] <
                                            -parameters$cutOffs[2]),
                                  which(egenefit[1, ] == 1 & egenefit[i, ] <
                                            -parameters$cutOffs[2]))
                            oneNegII <-
                                which(egenefit[1, ] == -1 & egenefit[i, ] <
                                          -parameters$cutOffs[1] &
                                          egenefit[i, ] >=
                                          -parameters$cutOffs[2])
                            zeros <-
                                c(which(egenefit[1, ] == 0 &
                                            abs(egenefit[i, ]) <=
                                            parameters$cutOffs[2]),
                                  which(egenefit[1, ] == 1 &
                                            egenefit[i, ] <=
                                            parameters$cutOffs[1] &
                                            egenefit[i, ] >=
                                            -parameters$cutOffs[2]),
                                  which(egenefit[1, ] == -1 &
                                            egenefit[i, ] >=
                                            -parameters$cutOffs[1] &
                                            egenefit[i, ] <=
                                            parameters$cutOffs[2]))
                            zerosI <-
                                c(which(egenefit[1, ] == 0 &
                                            abs(egenefit[i, ]) <=
                                            parameters$cutOffs[1]),
                                  which(egenefit[1, ] == 1 & egenefit[i, ] <=
                                            parameters$cutOffs[1] &
                                            egenefit[i, ] >=
                                            -parameters$cutOffs[1]),
                                  which(egenefit[1, ] == -1 &
                                            egenefit[i, ] <=
                                            parameters$cutOffs[1] &
                                            egenefit[i, ] >=
                                            -parameters$cutOffs[1]))
                            zerosII <-
                                c(which(egenefit[1, ] == 0 & egenefit[i, ] <=
                                            parameters$cutOffs[2] &
                                            egenefit[i, ] >
                                            parameters$cutOffs[1]),
                                  which(egenefit[1, ] == -1 & egenefit[i, ] >
                                            parameters$cutOffs[1] &
                                            egenefit[i, ] <=
                                            parameters$cutOffs[2]))
                            zerosIII <-
                                c(which(egenefit[1, ] == 0 & egenefit[i, ] >=
                                            -parameters$cutOffs[2] &
                                            egenefit[i, ] <
                                            -parameters$cutOffs[1]),
                                  which(egenefit[1, ] == 1 & egenefit[i, ] <
                                            -parameters$cutOffs[1] &
                                            egenefit[i, ] >=
                                            -parameters$cutOffs[2]))
                            if (soft) {
                                egenefit[i, onePosI] <- 3
                                egenefit[i, oneNegI] <- -3
                                egenefit[i, onePosII] <- 2
                                egenefit[i, oneNegII] <- -2
                                egenefit[i, zerosI] <- 0
                                egenefit[i, zerosII] <- 0.5
                                egenefit[i, zerosIII] <- -0.5
                            } else {
                                egenefit[i, onePosI] <- 2
                                egenefit[i, oneNegI] <- -2
                                egenefit[i, onePosII] <- 2
                                egenefit[i, oneNegII] <- -2
                                egenefit[i, zerosI] <- 0
                                egenefit[i, zerosII] <- 0
                                egenefit[i, zerosIII] <- 0
                            }
                        } else {
                            onePosI <-
                                c(which(egenefit[1, ] == 1 & egenefit[i, ] >
                                            parameters$cutOffs[2]),
                                  which(egenefit[1, ] == 0 & egenefit[i, ] >
                                            parameters$cutOffs[2]),
                                  which(egenefit[1, ] == -1 & egenefit[i, ] >
                                            parameters$cutOffs[2]))
                            onePosII <-
                                which(egenefit[1, ] == -1 & egenefit[i, ] >
                                          parameters$cutOffs[1] &
                                          egenefit[i, ] <=
                                          parameters$cutOffs[2])
                            oneNegI <-
                                c(which(egenefit[1, ] == -1 & egenefit[i, ] <
                                            -parameters$cutOffs[2]),
                                  which(egenefit[1, ] == 0 & egenefit[i, ] <
                                            -parameters$cutOffs[2]),
                                  which(egenefit[1, ] == 1 & egenefit[i, ] <
                                            -parameters$cutOffs[2]))
                            oneNegII <-
                                which(egenefit[1, ] == 1 & egenefit[i, ] <
                                          -parameters$cutOffs[1] &
                                          egenefit[i, ] >=
                                          -parameters$cutOffs[2])
                            zerosI <-
                                c(which(egenefit[1, ] == 0 &
                                            abs(egenefit[i, ]) <=
                                            parameters$cutOffs[1]),
                                  which(egenefit[1, ] == 1 & egenefit[i, ] <=
                                            parameters$cutOffs[1] &
                                            egenefit[i, ] >=
                                            -parameters$cutOffs[1]),
                                  which(egenefit[1, ] == -1 &
                                            egenefit[i, ] <=
                                            parameters$cutOffs[1] &
                                            egenefit[i, ] >=
                                            -parameters$cutOffs[1]))
                            zerosII <-
                                c(which(egenefit[1, ] == 0 & egenefit[i, ] <=
                                            parameters$cutOffs[2] &
                                            egenefit[i, ] >
                                            parameters$cutOffs[1]),
                                  which(egenefit[1, ] == 1 & egenefit[i, ] >
                                            parameters$cutOffs[1] &
                                            egenefit[i, ] <=
                                            parameters$cutOffs[2]))
                            zerosIII <-
                                c(which(egenefit[1, ] == 0 & egenefit[i, ] >=
                                            -parameters$cutOffs[2] &
                                            egenefit[i, ] <
                                            -parameters$cutOffs[1]),
                                  which(egenefit[1, ] == -1 & egenefit[i, ] <
                                            -parameters$cutOffs[1] &
                                            egenefit[i, ] >=
                                            -parameters$cutOffs[2]))
                            if (soft) {
                                egenefit[i, onePosI] <- 3
                                egenefit[i, oneNegI] <- -3
                                egenefit[i, onePosII] <- 2
                                egenefit[i, oneNegII] <- -2
                                egenefit[i, zerosI] <- 0
                                egenefit[i, zerosII] <- 0.5
                                egenefit[i, zerosIII] <- -0.5
                            } else {
                                egenefit[i, onePosI] <- 2
                                egenefit[i, oneNegI] <- -2
                                egenefit[i, onePosII] <- 2
                                egenefit[i, oneNegII] <- -2
                                egenefit[i, zerosI] <- 0
                                egenefit[i, zerosII] <- 0
                                egenefit[i, zerosIII] <- 0
                            }
                        }
                        real.breaks <- c(-4.5,-3.5,-2.5,-1.5,-0.75,
                                         -0.25,0.25,0.75,1.5,2.5,3.5,4.5)
                    }
                }
                egenefit[1, ] <- egenefit[1, ]*4
                if (!is.null(colSideColors[1])) {
                    colSideColorsSave <- colSideColors
                }
                if (min(egenefit) != max(egenefit)) {
                    if (csc) {
                        colSideColors <- rep("black", ncol(egenefit))
                        for (i in seq_len(length(colnames(egenefit)))) {
                            names <-
                                unlist(strsplit(colnames(egenefit)[i], "_"))
                            if (length(names) > 1) {
                                if (names[1] %in%
                                    colnames(getInhibitors(CNOlist)) &
                                    names[length(names)] %in%
                                    colnames(getStimuli(CNOlist))) {
                                    colSideColors[i] <- "brown"
                                }
                                if (names[1] %in%
                                    colnames(getStimuli(CNOlist)) &
                                    names[length(names)] %in%
                                    colnames(getInhibitors(CNOlist))) {
                                    colSideColors[i] <- "orange"
                                }
                                if (names[1] %in% "Ctrl" &
                                    names[length(names)] %in%
                                    colnames(getStimuli(CNOlist))) {
                                    colSideColors[i] <- "yellow"
                                }
                                if (names[1] %in% "Ctrl" &
                                    names[length(names)] %in%
                                    colnames(getInhibitors(CNOlist))) {
                                    colSideColors[i] <- "blue"
                                }
                            } else {
                                if (names %in%
                                    colnames(getInhibitors(CNOlist))) {
                                    colSideColors[i] <- "blue"
                                } else {
                                    colSideColors[i] <- "yellow"
                                }
                            }
                        }
                        if (!is.null(colSideColorsSave[1])) {
                            colSideColors <- rbind(colSideColorsSave,
                                                   colSideColors)
                        }
                        order2 <- order(colSideColors)
                    }
                    order1 <- order(colnames(egenefit))
                    egenefit <- egenefit[nrow(egenefit):1, ]
                    if (nrow(egenefit) == 2) {
                        names.backup <- rownames(egenefit)[1]
                        egenefit <-
                            rbind(egenefit[seq_len((nrow(egenefit)-1)), ], 0,
                                  egenefit[nrow(egenefit), ])
                        rownames(egenefit) <- seq_len(nrow(egenefit))
                        rownames(egenefit)[1] <- names.backup
                    } else {
                        egenefit <-
                            rbind(egenefit[seq_len((nrow(egenefit)-1)), ], 0,
                                  egenefit[nrow(egenefit), ])
                    }
                    rownames(egenefit)[nrow(egenefit)] <-
                        rownames(check.model)[Sgene]
                    rownames(egenefit)[(nrow(egenefit)-1)] <-
                        "---"
                    if (parameters$scoring[1] == 0) {
                        col.sums <- colMedians(abs(egenefit))
                        sig.mismatch <- which(col.sums >= 2)
                        sig.mismatch <-
                            sig.mismatch[!egenefit[nrow(egenefit), ]
                                         != 0]
                        get.cols <-
                            unique(c(sig.mismatch,
                                     which(egenefit[nrow(egenefit), ]
                                           != 0)))
                        egenefit <- egenefit[, get.cols]
                    } else {
                        get.cols <- seq_len(ncol(egenefit))
                    }
                    mainlab <-
                        paste("Regulated by ", rownames(check.model)[Sgene],
                              "\n", sep = "")
                    if (csc) {
                        colSideColors <- colSideColors[get.cols]
                        if ("yellow" %in% colSideColors) {
                            mainlab <-
                                paste(mainlab,
                                      " Stimulationeffects (yellow)", sep = "")
                        }
                        if ("blue" %in% colSideColors) {
                            mainlab <-
                                paste(mainlab,
                                      " Knockdowneffects (blue)\n", sep = "")
                        }
                        if ("orange" %in% colSideColors) {
                            mainlab <-
                                paste(mainlab,
                                      " Silencingeffects Type I (orange)",
                                      sep = "")
                        }
                        if ("brown" %in% colSideColors) {
                            mainlab <-
                                paste(mainlab,
                                      " Silencingeffects Type II (brown)",
                                      sep = "")
                        }
                    } else {
                        colSideColors <- NULL
                    }
                    if (order %in% "rank") {
                        Rowv <- FALSE
                        egenefit_genes <-
                            egenefit[seq_len((nrow(egenefit)-2)), ]
                        namereset <- FALSE
                        if (!is.matrix(egenefit_genes)) {
                            egenefit_genes <- t(as.matrix(egenefit_genes))
                            namereset <- TRUE
                        } else {
                            geneorder <-
                                rownames(EtoS)[
                                    which(EtoS[, 2] == Sgene)[seq_len(Egenes)]]
                            egenefit_genes <-
                                egenefit_genes[
                                    order(match(rownames(egenefit_genes),
                                                geneorder),
                                          decreasing = TRUE), ]
                        }
                        egenefit <-
                            rbind(egenefit_genes,
                                  egenefit[(nrow(egenefit)-1):nrow(egenefit), ])
                        if (namereset) {
                            rownames(egenefit)[1] <-
                                names(which(EtoS[, 2] == Sgene))
                        }
                    }
                    if (order %in% "names") {
                        Rowv <- FALSE
                        tmp <- egenefit[seq_len((nrow(egenefit)-2)), ]
                        tmp <- tmp[order(rownames(tmp)), ]
                        rownames(egenefit)[seq_len((nrow(egenefit)-2))] <-
                            rownames(tmp)
                        egenefit[seq_len((nrow(egenefit)-2)), ] <- tmp
                    }
                    if (!is.null(dim(egenefit)[1]) & plot) {
                        if (Rowv & nrow(egenefit) > 3) {
                            Rowv <- FALSE
                            d <- dist(egenefit[-c(nrow(egenefit)-1,
                                                  nrow(egenefit)), ])
                            hc <- hclust(d)
                            egenefit <- egenefit[c(hc$order, nrow(egenefit)-1,
                                                   nrow(egenefit)), ]
                        } else {
                            Rowv = FALSE
                        }
                        if (Colv) {
                            clusterdata <- egenefit
                            clusterdata[nrow(egenefit), ] <- 0
                            clusterdata <- NULL
                        }
                        clusterdata <- NULL
                        if ("bio" %in% colnames) {
                            colnames(egenefit) <-
                                gene2protein(
                                    myCN2bioCN(colnames(egenefit),
                                               colnames(getStimuli(CNOlist)),
                                               colnames(
                                                   getInhibitors(CNOlist))))
                        }
                        print(HeatmapOP(egenefit, main = mainlab, xrot = xrot,
                                        breaks = real.breaks, coln = 11,
                                        Colv = Colv, Rowv = Rowv,
                                        colSideColors = colSideColors,
                                        dendrogram = dendrogram, col = col,
                                        clusterx = clusterdata, ...))
                    } else {
                        stop("one effect is not a matrix")
                    }
                } else {
                    stop("min equals max in data matrix")
                }
            } else {
                if (csc) {
                    colSideColors <- rep("black", ncol(egenefit))
                    for (i in seq_len(length(colnames(egenefit)))) {
                        names <- unlist(strsplit(colnames(egenefit)[i], "_"))
                        if (length(names) > 1) {
                            if (names[1] %in% colnames(getInhibitors(CNOlist)) &
                                names[length(names)] %in%
                                colnames(getStimuli(CNOlist))) {
                                colSideColors[i] <- "brown"
                            }
                            if (names[1] %in% colnames(getStimuli(CNOlist)) &
                                names[length(names)] %in%
                                colnames(getInhibitors(CNOlist))) {
                                colSideColors[i] <- "orange"
                            }
                            if (names[1] %in% "Ctrl" & names[length(names)] %in%
                                colnames(getStimuli(CNOlist))) {
                                colSideColors[i] <- "yellow"
                            }
                            if (names[1] %in% "Ctrl" & names[length(names)] %in%
                                colnames(getInhibitors(CNOlist))) {
                                colSideColors[i] <- "blue"
                            }
                        } else {
                            if (names %in% colnames(getInhibitors(CNOlist))) {
                                colSideColors[i] <- "blue"
                            } else {
                                colSideColors[i] <- "yellow"
                            }
                        }
                    }
                    if (!is.null(colSideColorsSave[1])) {
                        colSideColors <- rbind(colSideColorsSave,
                                               colSideColors)
                    }
                    order2 <- order(colSideColors)
                }
                order1 <- order(colnames(egenefit))
                egenefit <- egenefit[nrow(egenefit):1, ]
                if (nrow(egenefit) == 2) {
                    names.backup <- rownames(egenefit)[1]
                    egenefit <-
                        rbind(egenefit[seq_len((nrow(egenefit)-1)), ], 0,
                              egenefit[nrow(egenefit), ])
                    rownames(egenefit) <- seq_len(nrow(egenefit))
                    rownames(egenefit)[1] <- names.backup
                } else {
                    egenefit <-
                        rbind(egenefit[seq_len((nrow(egenefit)-1)), ], 0,
                              egenefit[nrow(egenefit), ])
                }
                rownames(egenefit)[nrow(egenefit)] <-
                    rownames(check.model)[Sgene]
                rownames(egenefit)[(nrow(egenefit)-1)] <- "---"
                if (parameters$scoring[1] == 0) {
                    col.sums <- colMedians(abs(egenefit))
                    sig.mismatch <- which(col.sums >= 2)
                    sig.mismatch <-
                        sig.mismatch[!egenefit[nrow(egenefit), ] != 0]
                    get.cols <-
                        unique(c(sig.mismatch,
                                 which(egenefit[nrow(egenefit), ] != 0)))
                    egenefit <- egenefit[, get.cols]
                } else {
                    get.cols <- seq_len(ncol(egenefit))
                }
                mainlab <-
                    paste("Regulated by ", rownames(check.model)[Sgene],
                          "\n", sep = "")
                if (csc) {
                    colSideColors <- colSideColors[get.cols]
                    if ("yellow" %in% colSideColors) {
                        mainlab <- paste(mainlab,
                                         " Stimulationeffects (yellow)",
                                         sep = "")
                    }
                    if ("blue" %in% colSideColors) {
                        mainlab <- paste(mainlab,
                                         " Knockdowneffects (blue)\n",
                                         sep = "")
                    }
                    if ("orange" %in% colSideColors) {
                        mainlab <- paste(mainlab,
                                         " Silencingeffects Type I (orange)",
                                         sep = "")
                    }
                    if ("brown" %in% colSideColors) {
                        mainlab <- paste(mainlab,
                                         " Silencingeffects Type II (brown)",
                                         sep = "")
                    }
                } else {
                    colSideColors <- NULL
                }
                mainlab <- paste("Regulated by ", rownames(check.model)[Sgene],
                                 "\n", sep = "")
                egenefit[nrow(egenefit), ] <-
                    egenefit[nrow(egenefit), ]*max(abs(egenefit))
                if (order %in% "rank") {
                    Rowv <- FALSE
                    egenefit_genes <- egenefit[seq_len((nrow(egenefit)-2)), ]
                    namereset <- FALSE
                    if (!is.matrix(egenefit_genes)) {
                        egenefit_genes <- t(as.matrix(egenefit_genes))
                        namereset <- TRUE
                    } else {
                        geneorder <-
                            rownames(EtoS)[which(EtoS[, 2] ==
                                                     Sgene)[seq_len(Egenes)]]
                        egenefit_genes <-
                            egenefit_genes[order(match(rownames(egenefit_genes),
                                                       geneorder),
                                                 decreasing = TRUE), ]
                    }
                    egenefit <-
                        rbind(egenefit_genes,
                              egenefit[(nrow(egenefit)-1):nrow(egenefit), ])
                    if (namereset) {
                        rownames(egenefit)[1] <-
                            names(which(EtoS[, 2] == Sgene))
                    }
                }
                if (order %in% "names") {
                    Rowv <- FALSE
                    tmp <- egenefit[seq_len((nrow(egenefit)-2)), ]
                    tmp <- tmp[sort(rownames(tmp)), ]
                    rownames(egenefit)[seq_len((nrow(egenefit)-2))] <-
                        rownames(tmp)
                    egenefit[seq_len((nrow(egenefit)-2)), ] <- tmp
                }
                if (Rowv & nrow(egenefit) > 3) {
                    Rowv <- FALSE
                    d <- dist(egenefit[-c(nrow(egenefit)-1, nrow(egenefit)), ])
                    hc <- hclust(d)
                    egenefit <-
                        egenefit[c(hc$order, nrow(egenefit)-1,
                                   nrow(egenefit)), ]
                } else {
                    Rowv = FALSE
                }
                if (Colv) {
                    clusterdata <- egenefit
                    clusterdata[nrow(egenefit), ] <- 0
                    clusterdata <- NULL
                }
                clusterdata <- NULL
                low <-
                    sum(egenefit[nrow(egenefit), ] ==
                            min(egenefit[nrow(egenefit), ]))
                high <-
                    sum(egenefit[nrow(egenefit), ] ==
                            max(egenefit[nrow(egenefit), ]))
                egenefit2 <- egenefit
                egenefit2[rownames(egenefit2) %in%
                              rownames(EtoS)[EtoS[, 3] == -1], ] <-
                    egenefit2[rownames(egenefit2) %in%
                                  rownames(EtoS)[EtoS[, 3] ==
                                                     -1], ]*(-1)
                egenefit2 <- t(apply(egenefit2, 1, rank))
                high2 <- egenefit2 > ncol(egenefit2)-high
                low2 <- egenefit2 < low
                mid <- egenefit2 >= low & egenefit2 <=
                    ncol(egenefit2)-high
                egenefit2[high2] <- 1
                egenefit2[low2] <- -1
                egenefit2[mid] <- 0
                if (csc) {
                    colSideColors <-
                        colSideColors[order(egenefit2[nrow(egenefit2), ])]
                }
                egenefit <- egenefit[, order(egenefit2[nrow(egenefit2), ])]
                egenefit2 <- egenefit2[, order(egenefit2[nrow(egenefit2), ])]
                show.ranks <- FALSE
                if (show.ranks) {
                    egenefit <- t(apply(egenefit, 1, rank))
                    breaks <-
                        c(0, sort(unique(egenefit[nrow(egenefit), ])),
                          ncol(egenefit)+1)
                    if (verbose) {
                        message(breaks)
                    }
                }
                if (ranks) {
                    if (is.null(breaks[1])) {
                        breaks <- c(-2,-0.5,0.5,2)
                    }
                    if ("bio" %in% colnames) {
                        colnames(egenefit2) <-
                            gene2protein(
                                myCN2bioCN(colnames(egenefit2),
                                           colnames(getStimuli(CNOlist)),
                                           colnames(getInhibitors(CNOlist))))
                    }
                    print(HeatmapOP(egenefit2, main = mainlab, xrot = xrot,
                                    breaks = breaks, coln = 11, Colv = Colv,
                                    Rowv = Rowv, colSideColors = colSideColors,
                                    dendrogram = dendrogram,
                                    colSideColorsPos = "top", col = col,
                                    clusterx = clusterdata, ...))
                } else {
                    if (is.null(breaks[1])) {
                        breaks <- seq(-1,1,0.1)
                    }
                    if ("bio" %in% colnames) {
                        colnames(egenefit) <-
                            gene2protein(
                                myCN2bioCN(colnames(egenefit),
                                           colnames(getStimuli(CNOlist)),
                                           colnames(getInhibitors(CNOlist))))
                    }
                    print(HeatmapOP(egenefit, main = mainlab, xrot = xrot,
                                    breaks = breaks, coln = 11, Colv = Colv,
                                    Rowv = Rowv, colSideColors = colSideColors,
                                    dendrogram = dendrogram,
                                    colSideColorsPos = "top", col = col,
                                    clusterx = clusterdata, ...))
                }
            }
        } else {
            mainlab <- paste("Regulated by ", rownames(check.model)[Sgene],
                             "\n", sep = "")
            if (plot) {
                print(HeatmapOP(errorMat(), main = mainlab, sub = "",
                                Colv = FALSE, Rowv = FALSE, col = "RdBu",
                                coln = 12, breaks = seq(0,8,0.1)), ...)
            }
            stop("min equals max in data matrix")
            bad.data <- TRUE
        }
        if (sum(EtoS[, 2] == Sgene) == 0) {
            if (!bad.data) {
                mainlab <- paste("Regulated by ",
                                 rownames(check.model)[Sgene],
                                 "\n", sep = "")
                if (plot) {
                    print(HeatmapOP(errorMat(), main = mainlab, sub = "",
                                    Colv = FALSE, Rowv = FALSE, col = "RdBu",
                                    coln = 12, breaks = seq(0,8,0.1)), ...)
                }
                return(NULL)
            }
        } else {
            if (!is.na(rownames(as.matrix(EtoS[EtoS[, 2] ==
                                               Sgene, ]))[1])) {
                if (sum(EtoS[, 2] == Sgene) > 1) {
                    genesInfo <- EtoS[EtoS[, 2] == Sgene, ]
                } else {
                    names.backup <- rownames(EtoS)[EtoS[, 2] == Sgene]
                    genesInfo <- t(as.matrix(EtoS[EtoS[, 2] == Sgene, ]))
                    rownames(genesInfo) <- names.backup
                }
                if (affyIds == FALSE) {
                    temp <-
                        as.vector(unlist(mget(rownames(genesInfo),
                                              get(paste(affychip,
                                                        "SYMBOL", sep = "")))))
                    if (sum(is.na(temp) == TRUE) > 0) {
                        temp[is.na(temp)] <- rownames(genesInfo)[is.na(temp)]
                    }
                    rownames(genesInfo) <- temp
                }
                return(list(genesInfo = genesInfo, data = egenefit))
            }
        }
    }
#' sample normal form
#'
#' creates a random normal form or hyper-graph
#' @param vertices number of vertices
#' @param negation if TRUE, negations (NOT gates) are allowed
#' @param max.edge.size maximal number of inputs per edge
#' @param max.edges maximal number of hyper-edges
#' @param dag if TRUE, graph will be acyclic
#' @author Martin Pirkl
#' @return random hyper-graph in normal form
#' @export
#' @examples
#' g <- randomDnf(10)
randomDnf <- function(vertices = 10, negation = TRUE, max.edge.size = NULL,
                      max.edges = NULL, dag = FALSE) {
    dnf <- NULL
    if (is.numeric(vertices)) {
        if (vertices < 27) {
            vertices <- LETTERS[seq_len(vertices)]
        } else {
            vertices <- paste("S", seq_len(vertices)-1, "g", sep = "")
        }
    }
    if (is.null(max.edge.size[1])) {
        max.edge.size <- length(vertices) - 1
    }
    if (is.null(max.edges[1])) {
        max.edges <- length(vertices) - 1
    }
    for (i in seq_len(max.edges)) {
        edge.size <- sample(seq_len(max.edge.size), 1)
        output <- sample(vertices, 1)
        inputs <- NULL
        for (j in seq_len(edge.size)) {
            inputs <-
                c(inputs,
                  sample(vertices[-grep(paste(c(output, inputs),
                                              collapse = "|"), vertices)], 1))
        }
        if (negation) {
            pre <- sample(c("", "!"), edge.size, replace = TRUE)
        } else {
            pre <- rep("", edge.size)
        }
        inputs <- sort(inputs)
        dnf <-
            c(dnf,
              paste(c(paste(paste(pre, inputs, sep = ""), collapse = "+"), "=",
                      output), collapse = ""))
    }
    if (dag) {
        dnf <- removeCycles(dnf = dnf)
    }
    return(unique(dnf))
}
#' score a boolean network
#'
#' computes the score of a boolean network given the model and data
#' @param bString binary string denoting the boolean network
#' @param CNOlist CNOlist object (see package CellNOptR), if available.
#' @param fc m x l matrix of foldchanges of gene expression values or
#' equivalent input
#' (normalized pvalues, logodds, ...) for m E-genes and l contrasts. If left
#' NULL, the gene expression
#' data is used to calculate naive foldchanges.
#' @param expression Optional normalized m x l matrix of gene expression data
#' for m E-genes and l experiments.
#' @param model Model object including the search space, if available.
#' See CellNOptR::preprocessing.
#' @param method Scoring method can be "cosine", a correlation,
#' or a distance measure. See ?cor and ?dist for details.
#' @param sizeFac Size factor penelizing the hyper-graph size.
#' @param NAFac factor penelizing NAs in the data.
#' @param parameters parameters for discrete case (not recommended);
#' has to be a list with entries cutOffs and scoring:
#' cutOffs = c(a,b,c) with a (cutoff for real zeros),
#' b (cutoff for real effects),
#' c = -1 for normal scoring, c between 0 and
#' 1 for keeping only relevant % of E-genes,
#' between -1 and 0 for keeping only a specific quantile of E-genes,
#' and c > 1 for keeping the top c E-genes;
#' scoring = c(a,b,c) with a (weight for real effects),
#' c (weight for real zeros),
#' b (multiplicator for effects/zeros between a and c);
#' @param NEMlist NEMlist object (optional)
#' @param relFit if TRUE a relative fit for each
#' E-gene is computed (not recommended)
#' @param verbose TRUE for verbose output
#' @author Martin Pirkl
#' @return numeric value (score)
#' @export
#' @examples
#' sim <- simBoolGtn()
#' scoreDnf(sim$bString, sim$CNOlist, sim$fc, model=sim$model)
scoreDnf <- function(bString, CNOlist, fc,
                     expression=NULL, model, method = "cosine",
                     sizeFac=10^-10,NAFac=1,
                     parameters = list(cutOffs = c(0,1,0),
                                       scoring = c(0.25,0.5,2)),
                     NEMlist = NULL,relFit = FALSE,
                     verbose = FALSE) {
    approach <- "fc"
    if (is.null(fc[1])) { approach <- "abs" }
    if (is.null(fc[1]) & is.null(expression[1])) {
        stop("please either provide a matrix of foldchanges 'fc' ",
             "or a matrix of expression values 'expression'")
    }
    NEMlist <- list()
    NEMlist$fc <- fc
    NEMlist$expression <- expression
    NEMlist <- checkNEMlist(NEMlist, CNOlist=CNOlist,
                            parameters = parameters, approach = approach,
                            method=method)
    score <- computeScoreNemT1(CNOlist,model,bString,sizeFac=sizeFac,
                               NAFac=NAFac,parameters=parameters,
                               approach=approach,NEMlist=NEMlist,
                               relFit=relFit,method=method,verbose=verbose,
                               opt="min")
    return(score)
}
#' plot simulation object
#'
#' plots the boolen network from a simulation
#' as disjunctive normal form
#' @param x bnemsim object
#' @param ... further arguments; see function mnem::plotDnf
#' @author Martin Pirkl
#' @return plot of boolean network
#' @method plot bnemsim
#' @export
#' @importFrom mnem plotDnf
#' @examples
#' sim <- simBoolGtn()
#' plot(sim)
plot.bnemsim <- function(x, ...) {
    plotDnf(x$model$reacID[as.logical(x$bString)])
}
#' plot bnem opbject
#'
#' plots the boolen network as disjunctive normal form
#' @param x bnemsim object
#' @param ... further arguments; see function mnem::plotDnf
#' @author Martin Pirkl
#' @return plot of boolean network
#' @method plot bnem
#' @export
#' @importFrom mnem plotDnf
#' @examples
#' sifMatrix <- rbind(c("A", 1, "B"), c("A", 1, "C"), c("B", 1, "D"),
#' c("C", 1, "D"))
#' temp.file <- tempfile(pattern="interaction",fileext=".sif")
#' write.table(sifMatrix, file = temp.file, sep = "\t",
#' row.names = FALSE, col.names = FALSE,
#' quote = FALSE)
#' PKN <- CellNOptR::readSIF(temp.file)
#' CNOlist <- dummyCNOlist("A", c("B","C","D"), maxStim = 1,
#' maxInhibit = 2, signals = c("A", "B","C","D"))
#' model <- CellNOptR::preprocessing(CNOlist, PKN, maxInputsPerGate = 100)
#' expression <- matrix(rnorm(nrow(slot(CNOlist, "cues"))*10), 10,
#' nrow(slot(CNOlist, "cues")))
#' fc <- computeFc(CNOlist, expression)
#' initBstring <- rep(0, length(model$reacID))
#' res <- bnem(search = "greedy", model = model, CNOlist = CNOlist,
#' fc = fc, pkn = PKN, stimuli = "A", inhibitors = c("B","C","D"),
#' parallel = NULL, initBstring = initBstring, draw = FALSE, verbose = FALSE,
#' maxSteps = Inf, seeds = 10)
#' plot(res)
plot.bnem <- function(x,...) {
    par(mfrow=c(1,2))
    plotDnf(x$graph,...)
    for (i in seq_len(length(x$scores))) {
        if (i == 1) {
            plot(x$scores[[i]],type="b",col=i,
                 main="score progression",ylab="score")
        } else {
            lines(x$scores[[i]],type="b",col=i)
        }
    }
}
MartinFXP/bnem documentation built on Nov. 5, 2024, 11:57 a.m.