# Tests the pairwiseTTests function.
# library(scran); library(testthat); source("setup.R"); source("test-pairwise-t.R")
REFFUN <- function(y, grouping, direction="any", lfc=0)
# A reference function using the t.test function.
{
output <- pairwiseTTests(y, grouping, direction=direction, lfc=lfc)
grouping <- factor(grouping)
clust.vals <- levels(grouping)
alt.hyp <- switch(direction, any="two.sided", up="greater", down="less")
for (host in clust.vals) {
host.y <- y[,grouping==host,drop=FALSE]
for (target in setdiff(clust.vals, host)) {
target.y <- y[,grouping==target,drop=FALSE]
if (ncol(host.y)>1L && ncol(target.y)>1L) {
effect <- rowMeans(host.y) - rowMeans(target.y)
pval <- numeric(nrow(y))
for (i in seq_along(pval)) {
if (lfc==0) {
cur.p <- t.test(host.y[i,], target.y[i,], alternative=alt.hyp)$p.value
} else {
if (direction=="any") {
left.p <- t.test(host.y[i,], target.y[i,], alternative="less", mu=-lfc)$p.value
right.p <- t.test(host.y[i,], target.y[i,], alternative="greater", mu=lfc)$p.value
cur.p <- pmin(left.p, right.p, 0.5) * 2
} else if (direction=="up") {
cur.p <- t.test(host.y[i,], target.y[i,], alternative=alt.hyp, mu=lfc)$p.value
} else {
cur.p <- t.test(host.y[i,], target.y[i,], alternative=alt.hyp, mu=-lfc)$p.value
}
}
pval[i] <- cur.p
}
} else {
pval <- effect <- rep(NA_real_, nrow(y))
}
currow <- which(output$pairs[,1]==host & output$pairs[,2]==target)
curres <- output$statistics[[currow]]
expect_equal(unname(curres$logFC), unname(effect))
expect_equal(pval, curres$p.value)
expect_equal(p.adjust(pval, method="BH"), curres$FDR)
expect_identical(rownames(y), rownames(curres))
}
}
return(TRUE)
}
set.seed(70000)
ncells <- 200
ngenes <- 250
means <- 2^runif(ngenes, -1, 5)
dummy <- matrix(rnbinom(ngenes*ncells, mu=means, size=5), ncol=ncells, nrow=ngenes)
X <- scuttle::normalizeCounts(dummy, colSums(dummy))
rownames(X) <- seq_len(nrow(X))
set.seed(7000001)
test_that("pairwiseTTests works as expected without blocking or design matrices", {
clust <- kmeans(t(X), centers=3)
clusters <- as.factor(clust$cluster)
REFFUN(X, clusters)
REFFUN(X, clusters, direction="up")
REFFUN(X, clusters, direction="down")
REFFUN(X, clusters, lfc=0.2)
REFFUN(X, clusters, lfc=0.2, direction="up")
REFFUN(X, clusters, lfc=0.2, direction="down")
# Checking what happens if one of the groups has only one element.
re.clust <- clust$cluster
re.clust[1] <- 4
re.clust <- factor(re.clust)
expect_warning(REFFUN(X, re.clust), "no within-block")
# Checking what happens if two of the groups have only one element.
re.clust <- clust$cluster
re.clust[1:2] <- 4:5
re.clust <- factor(re.clust)
expect_warning(REFFUN(X, re.clust), "no within-block")
# Checking what happens if there is an empty level.
re.clusters <- clusters
levels(re.clusters) <- 1:4
expect_warning(out <- pairwiseTTests(X, re.clusters), "no within-block")
ref <- pairwiseTTests(X, clusters)
subset <- match(paste0(ref$pairs$first, ".", ref$pairs$second),
paste0(out$pairs$first, ".", out$pairs$second))
expect_false(any(is.na(subset)))
expect_equal(out$statistics[subset], ref$statistics)
})
FACTORCHECK <- function(left, right) {
expect_identical(names(left), names(right))
oL <- order(left$pairs[,1], left$pairs[,2])
oR <- order(right$pairs[,1], right$pairs[,2])
expect_identical(left$pairs[oL,], right$pairs[oR,])
expect_identical(names(left$statistics)[oL], names(right$statistics)[oR])
for (x in seq_along(oL)) {
curleft <- left$statistics[[oL[x]]]
curright <- right$statistics[[oR[x]]]
expect_identical(sort(colnames(curleft)), sort(colnames(curright)))
expect_equal(curleft, curright[,colnames(curleft)])
}
return(TRUE)
}
set.seed(70000011)
test_that("pairwiseTTests responds to non-standard level ordering", {
clusters <- sample(LETTERS[1:5], ncol(X), replace=TRUE)
f1 <- factor(clusters)
f2 <- factor(clusters, rev(levels(f1)))
FACTORCHECK(pairwiseTTests(X, f1), pairwiseTTests(X, f2))
})
set.seed(70000012)
test_that("pairwiseTTests responds to restriction and exclusion", {
clusters <- sample(LETTERS[1:5], ncol(X), replace=TRUE)
restrict <- c("B", "C")
keep <- clusters %in% restrict
expect_identical(pairwiseTTests(X, clusters, restrict=restrict),
pairwiseTTests(X[,keep], clusters[keep]))
restrict <- c("A", "D", "E")
keep <- clusters %in% restrict
expect_identical(pairwiseTTests(X, clusters, restrict=restrict),
pairwiseTTests(X[,keep], clusters[keep]))
exclude <- c("A", "B", "C")
keep <- !clusters %in% exclude
expect_identical(pairwiseTTests(X, clusters, exclude=exclude),
pairwiseTTests(X[,keep], clusters[keep]))
})
set.seed(70000012)
test_that("pairwiseTTests handles unused levels correctly", {
clusters <- factor(sample(LETTERS[1:5], ncol(X), replace=TRUE))
ref <- pairwiseTTests(X, clusters)
# Correctly spawns a bunch of NA's.
restrict <- c("A", "D", "E")
keep <- clusters %in% restrict
expect_warning(raw <- pairwiseTTests(X[,keep], clusters[keep]), "no within-block")
both.present <- ref$pairs[,1] %in% restrict & ref$pairs[,2] %in% restrict
expect_identical(raw$statistics[both.present], ref$statistics[both.present])
for (other in which(!both.present)) {
expect_true(all(is.na(raw$statistics[[other]][,"p.value"])))
}
# First attempting restriction.
attempt <- pairwiseTTests(X, clusters, restrict=restrict)
expect_identical(attempt, pairwiseTTests(X[,keep], as.character(clusters[keep])))
clust2 <- clusters
clust2[!clust2 %in% restrict] <- NA
expect_identical(attempt, pairwiseTTests(X, as.character(clust2)))
# Now attempting exclusion.
exclude <- c("A", "B", "C")
keep <- !clusters %in% exclude
attempt <- pairwiseTTests(X, clusters, exclude=exclude)
expect_identical(attempt, pairwiseTTests(X[,keep], as.character(clusters[keep])))
clust2 <- clusters
clust2[clust2 %in% exclude] <- NA
expect_identical(attempt, pairwiseTTests(X, as.character(clust2)))
# Handles empty spaces correctly.
clust2 <- as.character(clusters)
clust2[clust2 %in% exclude] <- ""
expect_warning(attempt2 <- pairwiseTTests(X, clust2), "replacing")
expect_identical(attempt, attempt2)
})
###################################################################
BLOCKFUN <- function(y, grouping, block, direction="any", ...) {
out <- pairwiseTTests(y, grouping, block=block, direction=direction, ...)
ngroups <- length(unique(grouping))
expect_equal(nrow(out$pairs), ngroups^2L - ngroups)
expect_identical(nrow(out$pairs), length(out$statistics))
for (p in seq_len(nrow(out$pairs))) {
curpair <- unlist(out$pairs[p,])
ref.res <- out$statistics[[p]]
# Extracting block-wise results.
block.weights <- block.up <- block.down <- block.lfc <- list()
for (b in unique(block)) {
B <- as.character(b)
chosen <- block==b & grouping %in% curpair
subgroup <- as.character(grouping[chosen])
N1 <- sum(subgroup==curpair[1])
N2 <- sum(subgroup==curpair[2])
if (N1==0 || N2==0) {
next
}
block.weights[[B]] <- 1/(1/N1 + 1/N2)
if (direction=="any") {
up.res <- pairwiseTTests(y[,chosen], subgroup, direction="up", ...)
to.use <- which(up.res$pairs$first==curpair[1] & up.res$pairs$second==curpair[2])
block.up[[B]] <- up.res$statistics[[to.use]]$p.value
down.res <- pairwiseTTests(y[,chosen], subgroup, direction="down", ...)
to.use <- which(down.res$pairs$first==curpair[1] & down.res$pairs$second==curpair[2])
block.down[[B]] <- down.res$statistics[[to.use]]$p.value
block.lfc[[B]] <- down.res$statistics[[to.use]]$logFC
} else {
block.res <- pairwiseTTests(y[,chosen], subgroup, direction=direction, ...)
to.use <- which(block.res$pairs$first==curpair[1] & block.res$pairs$second==curpair[2])
block.up[[B]] <- block.down[[B]] <- block.res$statistics[[to.use]]$p.value
block.lfc[[B]] <- block.res$statistics[[to.use]]$logFC
}
}
block.weights <- unlist(block.weights)
if (length(block.weights)==0) {
expect_equal(ref.res$logFC, rep(NA_real_, nrow(ref.res)))
expect_equal(ref.res$p.value, rep(NA_real_, nrow(ref.res)))
next
}
# Taking a weighted average.
all.lfc <- do.call(rbind, block.lfc)
ave.lfc <- colSums(all.lfc * block.weights) / sum(block.weights)
expect_equal(ave.lfc, ref.res$logFC)
# Combining p-values in each direction.
up.p <- metapod::parallelStouffer(block.up, weights=block.weights)$p.value
down.p <- metapod::parallelStouffer(block.down, weights=block.weights)$p.value
if (direction=="any") {
expect_equal(pmin(up.p, down.p, 0.5) * 2, ref.res$p.value)
} else if (direction=="up") {
expect_equal(up.p, ref.res$p.value)
} else if (direction=="down") {
expect_equal(down.p, ref.res$p.value)
}
}
return(TRUE)
}
set.seed(7000002)
test_that("pairwiseTTests works as expected with blocking", {
clust <- kmeans(t(X), centers=3)
clusters <- as.factor(clust$cluster)
block <- sample(3, ncol(X), replace=TRUE)
BLOCKFUN(X, clusters, block)
BLOCKFUN(X, clusters, block, direction="up")
BLOCKFUN(X, clusters, block, direction="down")
BLOCKFUN(X, clusters, block, lfc=0.2)
BLOCKFUN(X, clusters, block, lfc=0.2, direction="up")
BLOCKFUN(X, clusters, block, lfc=0.2, direction="down")
# Checking what happens to a block-specific group.
re.clust <- clust$cluster
re.clust[block!=1 & re.clust==1] <- 2
re.clust <- factor(re.clust)
expect_warning(BLOCKFUN(X, re.clust, block), NA)
# Checking what happens to a group-specific block.
re.clust <- clust$cluster
re.clust[block==1] <- 1
re.clust <- factor(re.clust)
expect_warning(BLOCKFUN(X, re.clust, block), NA)
# Checking what happens to a doubly-specific group and block.
re.clust <- clust$cluster
re.clust[block==1] <- 1
re.block <- block
re.block[re.clust==1] <- 1
expect_warning(BLOCKFUN(X, re.clust, re.block), "no within-block comparison")
})
set.seed(70000021)
test_that("pairwiseTTests with blocking works across multiple cores", {
clust <- kmeans(t(X), centers=3)
clusters <- as.factor(clust$cluster)
block <- sample(3, ncol(X), replace=TRUE)
ref <- pairwiseTTests(X, clusters, block=block)
expect_equal(ref, pairwiseTTests(X, clusters, block=block, BPPARAM=safeBPParam(2)))
expect_equal(ref, pairwiseTTests(X, clusters, block=block, BPPARAM=SnowParam(2)))
})
set.seed(70000022)
test_that("pairwiseTTests with blocking responds to non-standard level ordering", {
clusters <- sample(LETTERS[1:5], ncol(X), replace=TRUE)
f1 <- factor(clusters)
f2 <- factor(clusters, rev(levels(f1)))
b <- sample(1:3, ncol(X), replace=TRUE)
FACTORCHECK(pairwiseTTests(X, f1, block=b), pairwiseTTests(X, f2, block=b))
b1 <- factor(b, 1:3)
b2 <- factor(b, 3:1)
FACTORCHECK(pairwiseTTests(X, f1, block=b1), pairwiseTTests(X, f2, block=b2))
})
set.seed(70000023)
test_that("pairwiseTTests with blocking responds to restriction", {
clusters <- sample(LETTERS[1:5], ncol(X), replace=TRUE)
restrict <- c("B", "C")
keep <- clusters %in% restrict
b <- sample(1:3, ncol(X), replace=TRUE)
expect_identical(pairwiseTTests(X, clusters, restrict=restrict, block=b),
pairwiseTTests(X[,keep], clusters[keep], block=b[keep]))
restrict <- c("A", "D", "E")
keep <- clusters %in% restrict
expect_identical(pairwiseTTests(X, clusters, restrict=restrict, block=b),
pairwiseTTests(X[,keep], clusters[keep], block=b[keep]))
# What happens if the block and cluster are correlated?
b2 <- b
b2[!clusters %in% restrict] <- 0
expect_identical(pairwiseTTests(X, clusters, restrict=restrict, block=b2),
pairwiseTTests(X[,keep], clusters[keep], block=b2[keep]))
})
###################################################################
LINEARFUN <- function(y, grouping, design, direction="any", lfc=0) {
output <- pairwiseTTests(y, grouping, design=design, direction=direction, lfc=lfc)
grouping <- factor(grouping)
clust.vals <- levels(grouping)
design2 <- model.matrix(~ 0 + grouping)
colnames(design2) <- clust.vals
design2 <- cbind(design2, design) # assume 'design' does not have an intercept.
for (host in clust.vals) {
design.custom <- design2
design.custom[,host] <- 1
fit <- limma::lmFit(y, design.custom)
for (target in setdiff(clust.vals, host)) {
currow <- which(output$pairs[,1]==host & output$pairs[,2]==target)
curres <- output$statistics[[currow]]
cur.lfc <- -fit$coefficients[,target] # Minus, as 'host' is currently the intercept.
expect_equal(unname(curres$logFC), unname(cur.lfc))
left <- pt((cur.lfc + lfc) / (fit$sigma * fit$stdev.unscaled[,target]), lower.tail=TRUE, df = fit$df.residual)
right <- pt((cur.lfc - lfc) / (fit$sigma * fit$stdev.unscaled[,target]), lower.tail=FALSE, df = fit$df.residual)
if (direction=="any") {
pval <- pmin(left, right, 0.5) * 2
} else if (direction=="up") {
pval <- right
} else {
pval <- left
}
pval <- unname(pval)
expect_equal(pval, curres$p.value)
expect_equal(p.adjust(pval, method="BH"), curres$FDR)
expect_identical(rownames(y), rownames(curres))
}
}
return(TRUE)
}
set.seed(7000003)
test_that("pairwiseTTests works as expected with a design matrix", {
clust <- kmeans(t(X), centers=3)
clusters <- as.factor(clust$cluster)
covariate <- cbind(runif(ncol(X)))
LINEARFUN(X, clusters, covariate)
LINEARFUN(X, clusters, covariate, direction="up")
LINEARFUN(X, clusters, covariate, direction="down")
alternative <- cbind(runif(ncol(X)), sample(0:1, ncol(X), replace=TRUE))
LINEARFUN(X, clusters, alternative, lfc=0.2)
LINEARFUN(X, clusters, alternative, lfc=0.2, direction="up")
LINEARFUN(X, clusters, alternative, lfc=0.2, direction="down")
# Automatically removes the intercept.
b <- sample(LETTERS[1:3], ncol(X), replace=TRUE)
block <- model.matrix(~b)
expect_warning(out <- pairwiseTTests(X, clusters, design=block), "intercept")
expect_identical(out, pairwiseTTests(X, clusters, design=block[,-1,drop=FALSE]))
})
set.seed(70000031)
test_that("pairwiseTTests with linear models works across multiple cores", {
clust <- kmeans(t(X), centers=3)
clusters <- as.factor(clust$cluster)
covariate <- cbind(runif(ncol(X)))
ref <- pairwiseTTests(X, clusters, design=covariate)
expect_equal(ref, pairwiseTTests(X, clusters, design=covariate, BPPARAM=safeBPParam(2)))
expect_equal(ref, pairwiseTTests(X, clusters, design=covariate, BPPARAM=SnowParam(2)))
})
set.seed(70000032)
test_that("pairwiseTTests with linear models responds to non-standard level ordering", {
clusters <- sample(LETTERS[1:5], ncol(X), replace=TRUE)
# Releveled factors.
f1 <- factor(clusters)
f2 <- factor(clusters, rev(levels(f1)))
covariate <- cbind(runif(ncol(X)))
FACTORCHECK(pairwiseTTests(X, f1, design=covariate), pairwiseTTests(X, f2, design=covariate))
# Linearly equivalent design matrices.
d1 <- cbind(sample(0:1, ncol(X), replace=TRUE), sample(0:1, ncol(X), replace=TRUE))
d2 <- d1
d2[,1] <- d2[,1] + d2[,2]
FACTORCHECK(pairwiseTTests(X, f1, design=d1), pairwiseTTests(X, f2, design=d2))
# Checking that the two tests above are non-trivial,
# i.e., involve some differences in the pivoting.
CHECK_PIVOTING <- function(X1, X2) {
expect_false(identical(qr(X1, LAPACK=TRUE)$pivot, qr(X2, LAPACK=TRUE)$pivot))
QR <- qr(cbind(X1, X2)) # making sure X1 and X2 are equivalent.
expect_identical(QR$rank, ncol(X1))
expect_identical(QR$pivot[seq_len(QR$rank)], seq_len(QR$rank))
}
CHECK_PIVOTING(cbind(model.matrix(~f1), covariate), cbind(model.matrix(~f2), covariate))
CHECK_PIVOTING(cbind(model.matrix(~f1), d1), cbind(model.matrix(~f2), d2))
})
set.seed(70000023)
test_that("pairwiseTTests with design matrices responds to restriction", {
clusters <- sample(LETTERS[1:5], ncol(X), replace=TRUE)
cov <- cbind(runif(ncol(X)))
restrict <- c("B", "C")
keep <- clusters %in% restrict
expect_identical(pairwiseTTests(X, clusters, restrict=restrict, design=cov),
pairwiseTTests(X[,keep], clusters[keep], design=cov[keep,,drop=FALSE]))
restrict <- c("A", "D", "E")
keep <- clusters %in% restrict
expect_identical(pairwiseTTests(X, clusters, restrict=restrict, design=cov),
pairwiseTTests(X[,keep], clusters[keep], design=cov[keep,,drop=FALSE]))
})
###################################################################
set.seed(7000004)
test_that("pairwiseTTests behaves as expected with subsetting", {
y <- matrix(rnorm(12000), ncol=12)
rownames(y) <- seq_len(nrow(y))
g <- gl(4,3)
X <- cbind(runif(ncol(y)))
# Integer subsetting.
expect_identical(
pairwiseTTests(y, g, subset.row=1:10),
pairwiseTTests(y[1:10,], g)
)
expect_identical(
pairwiseTTests(y, g, design=X, subset.row=1:10),
pairwiseTTests(y[1:10,], g, design=X)
)
# Logical subsetting.
keep <- rbinom(nrow(y), 1, 0.5)==1
expect_identical(
pairwiseTTests(y, g, subset.row=keep),
pairwiseTTests(y[keep,], g)
)
expect_identical(
pairwiseTTests(y, g, design=X, subset.row=keep),
pairwiseTTests(y[keep,], g, design=X)
)
# Character subsetting.
rownames(y) <- paste0("GENE_", seq_len(nrow(y)))
chosen <- sample(rownames(y), 100)
expect_identical(
pairwiseTTests(y, g, subset.row=chosen),
pairwiseTTests(y[chosen,], g)
)
expect_identical(
pairwiseTTests(y, g, design=X, subset.row=chosen),
pairwiseTTests(y[chosen,], g, design=X)
)
# Auto-generates names for the subset.
y <- y0 <- matrix(rnorm(1200), ncol=12)
rownames(y) <- seq_len(nrow(y))
chosen <- 10:1
expect_identical(
pairwiseTTests(y, g, subset.row=chosen),
pairwiseTTests(y[chosen,], g)
)
expect_identical(
pairwiseTTests(y, g, design=X, subset.row=chosen),
pairwiseTTests(y[chosen,], g, design=X)
)
})
set.seed(7000005)
test_that("pairwiseTTests behaves as expected with log-transformation", {
y <- matrix(rnorm(12000), ncol=20)
g <- gl(5,4)
X <- cbind(rnorm(ncol(y)))
# For Welch:
ref <- pairwiseTTests(y, g)
out <- pairwiseTTests(y, g, log.p=TRUE)
expect_identical(ref$pairs, out$pairs)
for (i in seq_along(ref$statistics)) {
expect_equal(ref$statistics[[i]]$logFC, out$statistics[[i]]$logFC)
expect_equal(log(ref$statistics[[i]]$p.value), out$statistics[[i]]$log.p.value)
expect_equal(log(ref$statistics[[i]]$FDR), out$statistics[[i]]$log.FDR)
}
# For linear modelling:
ref <- pairwiseTTests(y, g, design=X)
out <- pairwiseTTests(y, g, design=X, log.p=TRUE)
expect_identical(ref$pairs, out$pairs)
for (i in seq_along(ref$statistics)) {
expect_equal(ref$statistics[[i]]$logFC, out$statistics[[i]]$logFC)
expect_equal(log(ref$statistics[[i]]$p.value), out$statistics[[i]]$log.p.value)
expect_equal(log(ref$statistics[[i]]$FDR), out$statistics[[i]]$log.FDR)
}
})
set.seed(70000051)
test_that("pairwiseTTests behaves with standardization of the log-fold changes", {
y <- matrix(rnorm(12000), ncol=20)
g <- rep(LETTERS[1:5], c(6,5,4,3,2))
X <- cbind(rnorm(ncol(y)))
ref <- pairwiseTTests(y, g)
std <- pairwiseTTests(y, g, std.lfc=TRUE)
expect_identical(ref[[1]][[1]]$PValue, std[[1]][[1]]$PValue)
in.1 <- g=="A"
s1 <- apply(y[,in.1], 1, var)
in.2 <- g=="B"
s2 <- apply(y[,in.2], 1, var)
s.pool <- sqrt((s1 * (sum(in.1) - 1) + s2 * (sum(in.2) - 1))/(sum(in.1|in.2) -2))
expect_equal(ref[[1]][[1]]$logFC / s.pool, std[[1]][[1]]$logFC)
# Handles zero-variance cases properly.
ref <- pairwiseTTests(rbind(rep(0, 20)), g, std.lfc=TRUE)
expect_identical(unname(ref[[1]][[1]]$logFC), 0)
ref <- pairwiseTTests(rbind(c(0,0,1,1)), c(1,1,2,2), std.lfc=TRUE)
expect_identical(unname(ref[[1]][[1]]$logFC), -Inf)
# With linear models.
ref <- pairwiseTTests(y, g, design=X)
std <- pairwiseTTests(y, g, design=X, std.lfc=TRUE)
expect_identical(ref[[1]][[1]]$PValue, std[[1]][[1]]$PValue)
fit <- lm.fit(x=cbind(model.matrix(~g), X), y=t(y))
s2 <- colMeans(fit$effects[-seq_len(fit$rank),]^2)
expect_equal(ref[[1]][[1]]$logFC / sqrt(s2), std[[1]][[1]]$logFC)
})
set.seed(70000051)
test_that("pairwiseTTests works with SEs and SCEs", {
y <- matrix(rnorm(1200), ncol=12)
g <- gl(4,3)
out <- pairwiseTTests(y, g)
out2 <- pairwiseTTests(SummarizedExperiment(list(logcounts=y)), g)
expect_identical(out, out2)
X2 <- SingleCellExperiment(list(logcounts=y))
colLabels(X2) <- g
out3 <- pairwiseTTests(X2)
expect_identical(out, out3)
})
set.seed(70000052)
test_that("pairwiseTTests works with sparse matrices", {
X_ <- matrix(rpois(100000, lambda=1), ncol=100)
X <- as(X_, "dgCMatrix")
groups <- sample(2, ncol(X), replace=TRUE)
expect_equal(
pairwiseTTests(X_, groups),
pairwiseTTests(X, groups),
)
block <- sample(2, ncol(X), replace=TRUE)
expect_equal(
pairwiseTTests(X_, groups, block=block),
pairwiseTTests(X, groups, block=block),
)
})
set.seed(7000006)
test_that("pairwiseTTests fails gracefully with silly inputs", {
y <- matrix(rnorm(12000), ncol=20)
g <- gl(5,4)
X <- cbind(rnorm(ncol(y)))
# Errors on incorrect inputs.
expect_error(pairwiseTTests(y[,0], g), "does not equal")
expect_error(pairwiseTTests(y, rep(1, ncol(y))), "need at least two")
expect_error(pairwiseTTests(y, g, design=X[0,,drop=FALSE]), "is not equal")
expect_error(pairwiseTTests(y, g, design=cbind(rep(1, ncol(y)))), "not of full rank")
# No genes.
empty <- pairwiseTTests(y[0,], g)
expect_identical(length(empty$statistics), nrow(empty$pairs))
expect_true(all(sapply(empty$statistics, nrow)==0L))
empty <- pairwiseTTests(y[0,], g, design=X)
expect_identical(length(empty$statistics), nrow(empty$pairs))
expect_true(all(sapply(empty$statistics, nrow)==0L))
# Avoid NA p-values when variance is zero.
clusters <- rep(1:2, each=ncol(y)/2)
stuff <- matrix(clusters, ngenes, ncol(y), byrow=TRUE)
out <- pairwiseTTests(stuff, clusters)
expect_true(all(out$statistics[[1]]$FDR < 1e-8))
expect_true(all(out$statistics[[2]]$FDR < 1e-8))
expect_equal(out$statistics[[1]]$logFC, rep(-1, ngenes))
expect_equal(out$statistics[[2]]$logFC, rep(1, ngenes))
out <- pairwiseTTests(stuff, clusters, design=X)
expect_true(all(out$statistics[[1]]$FDR < 1e-8))
expect_true(all(out$statistics[[2]]$FDR < 1e-8))
expect_equal(out$statistics[[1]]$logFC, rep(-1, ngenes))
expect_equal(out$statistics[[2]]$logFC, rep(1, ngenes))
})
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.