# Tests the pairwiseBinom() function.
# library(scran); library(testthat); source("setup.R"); source("test-pairwise-binom.R")
REFFUN <- function(y, grouping, direction="any", lfc=0)
# A reference function using the t.test function.
{
output <- pairwiseBinom(y, grouping, direction=direction, lfc=lfc)
grouping <- factor(grouping)
clust.vals <- levels(grouping)
alt.hyp <- switch(direction, any="two.sided", up="greater", down="less")
for (host in clust.vals) {
host.i <- grouping==host
host.y <- rowSums(y[,host.i,drop=FALSE] > 0)
host.n <- sum(host.i)
for (target in setdiff(clust.vals, host)) {
target.i <- grouping==target
target.y <- rowSums(y[,target.i,drop=FALSE] > 0)
target.n <- sum(target.i)
n <- host.y + target.y
p <- host.n/(host.n + target.n)
if (host.n > 0L && target.n > 0L) {
lvals <- edgeR::cpm(cbind(host.y, target.y), lib.size=c(host.n, target.n),
prior.count=1, log=TRUE)
effect <- unname(lvals[,1] - lvals[,2])
pval <- numeric(nrow(y))
for (i in seq_along(pval)) {
cur.n <- n[i]
cur.y <- host.y[i]
if (cur.n) {
if (direction=="any") {
right <- binom.test(cur.y, cur.n, p=p, alternative="greater")
left <- binom.test(cur.y, cur.n, p=p, alternative="less")
pv <- pmin(right$p.value, left$p.value, 0.5) * 2
} else {
pv <- binom.test(cur.y, cur.n, p=p, alternative=alt.hyp)$p.value
}
} else {
pv <- 1
}
pval[i] <- unname(pv)
}
} else {
pval <- effect <- rep(NA_real_, nrow(y))
}
currow <- which(output$pairs[,1]==host & output$pairs[,2]==target)
curres <- output$statistics[[currow]]
expect_equal(unname(curres$logFC), effect)
expect_equal(pval, curres$p.value)
expect_equal(p.adjust(pval, method="BH"), curres$FDR)
expect_identical(rownames(y), rownames(curres))
}
}
return(TRUE)
}
set.seed(80000)
ncells <- 200
ngenes <- 150
means <- runif(ngenes, 0, 5)
X <- matrix(rpois(ngenes*ncells, lambda=means), ncol=ncells, nrow=ngenes)
rownames(X) <- seq_len(nrow(X))
set.seed(8000001)
test_that("pairwiseBinom works as expected without blocking", {
clust <- kmeans(t(X), centers=3)
clusters <- as.factor(clust$cluster)
REFFUN(X, clusters)
REFFUN(X, clusters, direction="up")
REFFUN(X, clusters, direction="down")
# Checking what happens if one of the groups has only one element.
re.clust <- clust$cluster
re.clust[1] <- 4
re.clust <- factor(re.clust)
REFFUN(X, re.clust)
# Checking what happens if two of the groups have only one element.
re.clust <- clust$cluster
re.clust[1:2] <- 4:5
re.clust <- factor(re.clust)
REFFUN(X, re.clust)
# Checking what happens if there is an empty level.
re.clusters <- clusters
levels(re.clusters) <- 1:4
expect_warning(out <- pairwiseBinom(X, re.clusters), "no within-block")
ref <- pairwiseBinom(X, clusters)
subset <- match(paste0(ref$pairs$first, ".", ref$pairs$second),
paste0(out$pairs$first, ".", out$pairs$second))
expect_false(any(is.na(subset)))
expect_equal(out$statistics[subset], ref$statistics)
})
set.seed(800000112)
test_that("pairwiseBinom works as expected with a log-fold change threshold", {
# Throwing in a very small lfc to check that
# the fundamental calculations are executed correctly
# for the lfc-based function.
clust <- kmeans(t(X), centers=3)
clusters <- as.factor(clust$cluster)
out <- pairwiseBinom(X, clusters)
ref <- pairwiseBinom(X, clusters, lfc=1e-8)
expect_equal(out, ref, tol=1e-6)
out <- pairwiseBinom(X, clusters, direction="up")
ref <- pairwiseBinom(X, clusters, lfc=1e-8, direction="up")
expect_equal(out, ref, tol=1e-6)
out <- pairwiseBinom(X, clusters, direction="down")
ref <- pairwiseBinom(X, clusters, lfc=1e-8, direction="down")
expect_equal(out, ref, tol=1e-6)
# Just getting some test coverage here, not much that can be done
# without rewriting all of the relevant code for 'p'.
out <- pairwiseBinom(X, clusters, lfc=0.5)
out <- pairwiseBinom(X, clusters, lfc=0.5, direction="up")
out <- pairwiseBinom(X, clusters, lfc=0.5, direction="down")
})
FACTORCHECK <- function(left, right) {
expect_identical(names(left), names(right))
oL <- order(left$pairs[,1], left$pairs[,2])
oR <- order(right$pairs[,1], right$pairs[,2])
expect_identical(left$pairs[oL,], right$pairs[oR,])
expect_identical(names(left$statistics)[oL], names(right$statistics)[oR])
for (x in seq_along(oL)) {
curleft <- left$statistics[[oL[x]]]
curright <- right$statistics[[oR[x]]]
expect_identical(sort(colnames(curleft)), sort(colnames(curright)))
expect_equal(curleft, curright[,colnames(curleft)])
}
return(TRUE)
}
set.seed(80000011)
test_that("pairwiseBinom responds to non-standard level ordering", {
clusters <- sample(LETTERS[1:5], ncol(X), replace=TRUE)
f1 <- factor(clusters)
f2 <- factor(clusters, rev(levels(f1)))
FACTORCHECK(pairwiseBinom(X, f1), pairwiseBinom(X, f2))
})
set.seed(80000012)
test_that("pairwiseBinom responds to restriction", {
clusters <- sample(LETTERS[1:5], ncol(X), replace=TRUE)
restrict <- c("B", "C")
keep <- clusters %in% restrict
expect_identical(pairwiseBinom(X, clusters, restrict=restrict),
pairwiseBinom(X[,keep], clusters[keep]))
restrict <- c("A", "D", "E")
keep <- clusters %in% restrict
expect_identical(pairwiseBinom(X, clusters, restrict=restrict),
pairwiseBinom(X[,keep], clusters[keep]))
exclude <- c("A", "B", "C")
keep <- !clusters %in% exclude
expect_identical(pairwiseBinom(X, clusters, exclude=exclude),
pairwiseBinom(X[,keep], clusters[keep]))
})
###################################################################
BLOCKFUN <- function(y, grouping, block, direction="any", ...) {
out <- pairwiseBinom(y, grouping, block=block, direction=direction, ...)
ngroups <- length(unique(grouping))
expect_equal(nrow(out$pairs), ngroups^2L - ngroups)
expect_identical(nrow(out$pairs), length(out$statistics))
for (p in seq_len(nrow(out$pairs))) {
curpair <- unlist(out$pairs[p,])
ref.res <- out$statistics[[p]]
# Extracting block-wise results.
block.weights <- block.up <- block.down <- block.lfc <- list()
for (b in unique(block)) {
B <- as.character(b)
chosen <- block==b & grouping %in% curpair
subgroup <- factor(grouping[chosen]) # refactoring to get rid of empty levels.
N1 <- sum(subgroup==curpair[1])
N2 <- sum(subgroup==curpair[2])
if (N1==0 || N2==0) {
next
}
block.weights[[B]] <- N1 + N2
suby <- y[,chosen,drop=FALSE]
if (direction=="any") {
# Recovering one-sided p-values for separate combining across blocks.
block.res.up <- pairwiseBinom(suby, subgroup, direction="up", ...)
to.use.up <- which(block.res.up$pairs$first==curpair[1] & block.res.up$pairs$second==curpair[2])
block.res.down <- pairwiseBinom(suby, subgroup, direction="down", ...)
to.use.down <- which(block.res.down$pairs$first==curpair[1] & block.res.down$pairs$second==curpair[2])
block.lfc[[B]] <- block.res.up$statistics[[to.use.up]]$logFC
block.up[[B]] <- block.res.up$statistics[[to.use.up]]$p.value
block.down[[B]] <- block.res.down$statistics[[to.use.down]]$p.value
} else {
block.res <- pairwiseBinom(suby, subgroup, direction=direction, ...)
to.use <- which(block.res$pairs$first==curpair[1] & block.res$pairs$second==curpair[2])
block.lfc[[B]] <- block.res$statistics[[to.use]]$logFC
block.up[[B]] <- block.down[[B]] <- block.res$statistics[[to.use]]$p.value
}
}
block.weights <- unlist(block.weights)
if (length(block.weights)==0) {
expect_equal(ref.res$logFC, rep(NA_real_, nrow(ref.res)))
expect_equal(ref.res$p.value, rep(NA_real_, nrow(ref.res)))
next
}
# Taking a weighted average.
all.lfc <- do.call(rbind, block.lfc)
ave.lfc <- colSums(all.lfc * block.weights) / sum(block.weights)
expect_equal(ave.lfc, ref.res$logFC)
# Combining p-values in each direction.
up.p <- metapod::parallelStouffer(block.up, weights=block.weights)$p.value
down.p <- metapod::parallelStouffer(block.down, weights=block.weights)$p.value
if (direction=="any") {
expect_equal(pmin(up.p, down.p, 0.5) * 2, ref.res$p.value)
} else if (direction=="up") {
expect_equal(up.p, ref.res$p.value)
} else if (direction=="down") {
expect_equal(down.p, ref.res$p.value)
}
}
return(TRUE)
}
set.seed(8000002)
test_that("pairwiseBinom works as expected with blocking", {
clust <- kmeans(t(X), centers=3)
clusters <- as.factor(clust$cluster)
block <- sample(3, ncol(X), replace=TRUE)
BLOCKFUN(X, clusters, block)
BLOCKFUN(X, clusters, block, direction="up")
BLOCKFUN(X, clusters, block, direction="down")
# Checking what happens to a block-specific group.
re.clust <- clust$cluster
re.clust[block!=1 & re.clust==1] <- 2
re.clust <- factor(re.clust)
BLOCKFUN(X, re.clust, block)
# Checking what happens to a group-specific block.
re.clust <- clust$cluster
re.clust[block==1] <- 1
re.clust <- factor(re.clust)
BLOCKFUN(X, re.clust, block)
# Checking what happens to a doubly-specific group and block.
re.clust <- clust$cluster
re.clust[block==1] <- 1
re.block <- block
re.block[re.clust==1] <- 1
expect_warning(BLOCKFUN(X, re.clust, re.block), "no within-block")
})
set.seed(80000021)
test_that("pairwiseBinom with blocking works across multiple cores", {
clust <- kmeans(t(X), centers=3)
clusters <- as.factor(clust$cluster)
block <- sample(3, ncol(X), replace=TRUE)
ref <- pairwiseBinom(X, clusters, block=block)
expect_equal(ref, pairwiseBinom(X, clusters, block=block, BPPARAM=safeBPParam(2)))
expect_equal(ref, pairwiseBinom(X, clusters, block=block, BPPARAM=SnowParam(2)))
})
set.seed(80000022)
test_that("pairwiseBinom with blocking responds to non-standard level ordering", {
clusters <- sample(LETTERS[1:5], ncol(X), replace=TRUE)
f1 <- factor(clusters)
f2 <- factor(clusters, rev(levels(f1)))
b <- sample(1:3, ncol(X), replace=TRUE)
FACTORCHECK(pairwiseBinom(X, f1, block=b), pairwiseBinom(X, f2, block=b))
b1 <- factor(b, 1:3)
b2 <- factor(b, 3:1)
FACTORCHECK(pairwiseBinom(X, f1, block=b1), pairwiseBinom(X, f2, block=b2))
})
set.seed(80000023)
test_that("pairwiseBinom with blocking responds to restriction", {
clusters <- sample(LETTERS[1:5], ncol(X), replace=TRUE)
restrict <- c("B", "C")
keep <- clusters %in% restrict
b <- sample(1:3, ncol(X), replace=TRUE)
expect_identical(pairwiseBinom(X, clusters, restrict=restrict, block=b),
pairwiseBinom(X[,keep], clusters[keep], block=b[keep]))
restrict <- c("A", "D", "E")
keep <- clusters %in% restrict
expect_identical(pairwiseBinom(X, clusters, restrict=restrict, block=b),
pairwiseBinom(X[,keep], clusters[keep], block=b[keep]))
# What happens if the block and cluster are correlated?
b2 <- b
b2[!clusters %in% restrict] <- 0
expect_identical(pairwiseBinom(X, clusters, restrict=restrict, block=b2),
pairwiseBinom(X[,keep], clusters[keep], block=b2[keep]))
})
###################################################################
set.seed(8000004)
test_that("pairwiseBinom behaves as expected with subsetting", {
y <- matrix(rnorm(1200), ncol=12)
rownames(y) <- seq_len(nrow(y))
g <- gl(4,3)
X <- cbind(runif(ncol(y)))
# Integer subsetting.
expect_identical(
pairwiseBinom(y, g, subset.row=1:10),
pairwiseBinom(y[1:10,], g)
)
# Logical subsetting.
keep <- rbinom(nrow(y), 1, 0.5)==1
expect_identical(
pairwiseBinom(y, g, subset.row=keep),
pairwiseBinom(y[keep,], g)
)
# Character subsetting.
rownames(y) <- paste0("GENE_", seq_len(nrow(y)))
chosen <- sample(rownames(y), 100)
expect_identical(
pairwiseBinom(y, g, subset.row=chosen),
pairwiseBinom(y[chosen,], g)
)
# Auto-generates names for the subset.
y <- y0 <- matrix(rnorm(1200), ncol=12)
rownames(y) <- seq_len(nrow(y))
expect_identical(
pairwiseBinom(y0, g, subset.row=10:1),
pairwiseBinom(y[10:1,], g)
)
})
set.seed(8000005)
test_that("pairwiseBinom behaves as expected with log-transformation", {
y <- matrix(rnorm(1200), ncol=20)
g <- gl(5,4)
X <- cbind(rnorm(ncol(y)))
# For Welch:
ref <- pairwiseBinom(y, g)
out <- pairwiseBinom(y, g, log.p=TRUE)
expect_identical(ref$pairs, out$pairs)
for (i in seq_along(ref$statistics)) {
expect_equal(ref$statistics[[i]]$effect, out$statistics[[i]]$effect)
expect_equal(log(ref$statistics[[i]]$p.value), out$statistics[[i]]$log.p.value)
expect_equal(log(ref$statistics[[i]]$FDR), out$statistics[[i]]$log.FDR)
}
})
set.seed(80000051)
test_that("pairwiseBinom works with SEs and SCEs", {
y <- matrix(rnorm(1200), ncol=12)
g <- gl(4,3)
out <- pairwiseBinom(y, g)
out2 <- pairwiseBinom(SummarizedExperiment(list(logcounts=y)), g)
expect_identical(out, out2)
X2 <- SingleCellExperiment(list(logcounts=y))
colLabels(X2) <- g
out3 <- pairwiseBinom(X2)
expect_identical(out, out3)
})
set.seed(8000006)
test_that("pairwiseBinom fails gracefully with silly inputs", {
y <- matrix(rnorm(1200), ncol=20)
g <- gl(5,4)
# Errors on incorrect inputs.
expect_error(pairwiseBinom(y[,0], g), "does not equal")
expect_error(pairwiseBinom(y, rep(1, ncol(y))), "need at least two")
# No genes.
empty <- pairwiseBinom(y[0,], g)
expect_identical(length(empty$statistics), nrow(empty$pairs))
expect_true(all(sapply(empty$statistics, nrow)==0L))
# Avoid NA p-values when variance is zero.
stuff <- matrix(c(0, 1), ngenes, ncol(y))
out <- pairwiseBinom(stuff, g)
expect_true(all(out$statistics[[1]]$FDR==1))
expect_true(all(out$statistics[[2]]$FDR==1))
expect_equal(out$statistics[[1]]$logFC, rep(0, ngenes))
expect_equal(out$statistics[[2]]$logFC, rep(0, ngenes))
})
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.