# context("Testing gene_prediction_scores")
library(geneBasisR)
### set up inputs
## libs
library(SingleCellExperiment)
set.seed(32)
## toy data
counts = matrix(c(rep(0,10),1,1,1,0,0, 1,1,1,0,0, 1,1, 0,0,0,1,0,0,0,0,0,1,1,0,0), nrow = 5, ncol = 7)
sce_correct = SingleCellExperiment(list(logcounts = counts))
colnames(sce_correct) = c(1:7)
rownames(sce_correct) = c(1:5)
sce_correct_w_batch = SingleCellExperiment(list(logcounts = counts))
colnames(sce_correct_w_batch) = c(1:7)
rownames(sce_correct_w_batch) = c(1:5)
sce_correct_w_batch$batch = c(1,1,1,"all","all",1,"all")
sce_wrong_rownames = SingleCellExperiment(list(logcounts = counts))
colnames(sce_wrong_rownames) = c(1:7)
rownames(sce_wrong_rownames) = c(1,1,2,3,"a")
# load mouse ds
data("sce_mouseEmbryo", package = "geneBasisR")
test_that("Return is the correct class", {
# right class
out = get_gene_prediction_scores(sce_correct, genes.selection = rownames(sce_correct) , n.neigh = 2)
expect_s3_class(out, "data.frame")
# right colnames exist
out = get_gene_prediction_scores(sce_correct, genes.selection = rownames(sce_correct) , n.neigh = 2)
out = colnames(out)
out_expect = c("gene" , "gene_score")
out = sum(out_expect %in% out)
expect_equal(out, 2)
# you will get a message if corr-thresh is too high
expect_message(get_gene_prediction_scores(sce_mouseEmbryo, genes.selection = rownames(sce_mouseEmbryo) , n.neigh = 2 , corr_all.thresh = 1),
"No genes are retained for this corr_all.thresh. Consider decreasing the threshold."
)
})
test_that("Return of the correct output", {
out = get_gene_prediction_scores(sce_correct, genes.selection = rownames(sce_correct) , n.neigh = 2, genes.predict = rownames(sce_correct))
out = out[, c("gene" , "gene_score")]
out$gene_score = round(out$gene_score)
out_expect = data.frame(gene = as.character(c(1:3)) , gene_score = c(1,1,1))
expect_identical(out, out_expect)
})
test_that("Return of the correct output, run 2", {
out = get_gene_prediction_scores(sce_correct, genes.selection = rownames(sce_correct) , n.neigh = 2, genes.predict = as.character(c(1,2)))
out = out[, c("gene" , "gene_score")]
out$gene_score = round(out$gene_score)
out_expect = data.frame(gene = as.character(c(1:2)) , gene_score = c(1,1))
expect_identical(out, out_expect)
})
test_that("Wrong input, sce", {
# should be unique rownames
expect_error(get_gene_prediction_scores(sce_wrong_rownames, genes.selection = rownames(sce_correct)),
"sce should have unique rownames.",
fixed=TRUE
)
# sce should be sce
expect_error(get_gene_prediction_scores(logcounts(sce_correct), genes.selection = rownames(sce_correct)),
"sce should be a SingleCellExperiment object.",
fixed=TRUE
)
})
test_that("Wrong input, genes.selection", {
# genes.selection should be character
expect_error(get_gene_prediction_scores(sce_correct, genes.selection = c(1,2,3)),
"Check genes.selection - should be character vector",
fixed=TRUE
)
# genes.selection should be a subset of rownames in sce_correct
expect_error(get_gene_prediction_scores(sce_correct, genes.selection = as.character(c(1,2,3,6))),
"Some gene names are missing from SCE.",
fixed=TRUE
)
# genes.selection is not NULL
expect_error(get_gene_prediction_scores(sce_correct, genes.selection = NULL),
"Check genes.selection - should be character vector",
fixed=TRUE
)
# is ok if genes.selections are ok
expect_error(get_gene_prediction_scores(sce_correct, genes.selection = rownames(sce_correct), n.neigh = 2),
NA)
})
test_that("Wrong input, genes.all", {
# genes.selection should be character
expect_error(get_gene_prediction_scores(sce_correct, genes.selection = as.character(c(1:5)), genes.all = c(1,4,5)),
"Check genes.all - should be character vector",
fixed=TRUE
)
# genes.selection should be a subset of rownames in sce_correct
expect_error(get_gene_prediction_scores(sce_correct, genes.selection = as.character(c(1:5)), genes.all = as.character(c(1,2,3,6))),
"Some gene names are missing from SCE.",
fixed=TRUE
)
# genes.selection is not NULL
expect_error(get_gene_prediction_scores(sce_correct, genes.selection = as.character(c(1:5)) , genes.all = NULL),
"Check genes.all - should be character vector",
fixed=TRUE
)
# is ok if genes.selections are ok
expect_error(get_gene_prediction_scores(sce_correct, genes.selection = as.character(c(1:5)), genes.all = as.character(c(1,4,5))),
NA)
# is ok if genes.selections are ok
expect_error(get_gene_prediction_scores(sce_correct, genes.selection = as.character(c(1:5)), corr_all.thresh = 1, genes.all = as.character(c(1,4,5))),
NA)
# single gene in predict
expect_error(get_gene_prediction_scores(sce_correct, genes.selection = as.character(c(1:5)), corr_all.thresh = 0,
genes.predict ="1", genes.all = as.character(c(1:5))),
NA)
})
test_that("Wrong input, batch", {
# batch is NULL or character
expect_error(get_gene_prediction_scores(sce_correct_w_batch, genes.selection = rownames(sce_correct_w_batch), n.neigh = 2, batch = 1),
"Check batch - should be NULL or string",
fixed=TRUE
)
# batch should be the field in sce
expect_error(get_gene_prediction_scores(sce_correct_w_batch, genes.selection = rownames(sce_correct_w_batch), n.neigh = 2, batch = "sample"),
"Batch should be one the colnames in colData(sce).",
fixed=TRUE
)
# no errors if batch correct
out = get_gene_prediction_scores(sce_correct_w_batch, genes.selection = rownames(sce_correct_w_batch), n.neigh = 2, batch = "batch")
expect_error(get_gene_prediction_scores(sce_correct_w_batch, genes.selection = rownames(sce_correct_w_batch), n.neigh = 2, batch = "batch"),
NA
)
})
test_that("Wrong input, n.neigh", {
# n.neigh - positive scalar > 1
expect_error(get_gene_prediction_scores(sce_correct, genes.selection = rownames(sce_correct), n.neigh = -1),
"Check n.neigh - should be positive integer > 1",
fixed=TRUE
)
# n.neigh - positive scalar > 1
expect_error(get_gene_prediction_scores(sce_correct, genes.selection = rownames(sce_correct), n.neigh = 1),
"Check n.neigh - should be positive integer > 1",
fixed=TRUE
)
# n.neigh - positive scalar > 1
expect_error(get_gene_prediction_scores(sce_correct, genes.selection = rownames(sce_correct), n.neigh = "random"),
"Check n.neigh - should be positive integer > 1",
fixed=TRUE
)
# internal check - n.neigh can be 'all' but not for users
expect_error(get_gene_prediction_scores(sce_correct, genes.selection = rownames(sce_correct), n.neigh = "all"),
"Check n.neigh - should be positive integer > 1",
fixed=TRUE
)
# n.neigh should be < min(size(batch)) - 1
expect_error(get_gene_prediction_scores(sce_correct_w_batch, genes.selection = rownames(sce_correct_w_batch), n.neigh = 3, batch = "batch"),
"Each batch should contain at least > n.neigh cells. Check your dataset or decrease n.neigh.",
fixed=TRUE
)
})
test_that("Wrong input, nPC.all", {
# nPC.all - NULL or positive scalar
expect_error(get_gene_prediction_scores(sce_correct, genes.selection = rownames(sce_correct), n.neigh = 2 , nPC.all = 0),
"Check nPC.all - should be NULL or positive integer",
fixed=TRUE
)
# nPC.all - NULL or positive scalar
expect_error(get_gene_prediction_scores(sce_correct, genes.selection = rownames(sce_correct), n.neigh = 2 , nPC.all = -10),
"Check nPC.all - should be NULL or positive integer",
fixed=TRUE
)
# nPC.all - NULL or positive scalar
expect_error(get_gene_prediction_scores(sce_correct, genes.selection = rownames(sce_correct), n.neigh = 2 , nPC.all = 5.5),
"Check nPC.all - should be NULL or positive integer",
fixed=TRUE
)
# nPC.all - NULL or positive scalar
expect_error(get_gene_prediction_scores(sce_correct, genes.selection = rownames(sce_correct), n.neigh = 2 , nPC.all = "all"),
"Check nPC.all - should be NULL or positive integer",
fixed=TRUE
)
# nPC - NULL or positive scalar
expect_error(get_gene_prediction_scores(sce_correct, genes.selection = rownames(sce_correct), n.neigh = 2 , nPC.all = NULL),
NA)
# nPC - NULL or positive scalar
expect_error(get_gene_prediction_scores(sce_correct, genes.selection = rownames(sce_correct), n.neigh = 2 , nPC.all = 3),
NA)
# nPC - NULL or positive scalar
expect_error(get_gene_prediction_scores(sce_correct, genes.selection = rownames(sce_correct), n.neigh = 2 , nPC.all = 30000),
NA)
})
test_that("Wrong input, nPC.selection", {
# nPC.all - NULL or positive scalar
expect_error(get_gene_prediction_scores(sce_correct, genes.selection = rownames(sce_correct), n.neigh = 2 , nPC.selection = 0),
"Check nPC.selection - should be NULL or positive integer",
fixed=TRUE
)
# nPC.all - NULL or positive scalar
expect_error(get_gene_prediction_scores(sce_correct, genes.selection = rownames(sce_correct), n.neigh = 2 , nPC.selection = -10),
"Check nPC.selection - should be NULL or positive integer",
fixed=TRUE
)
# nPC.all - NULL or positive scalar
expect_error(get_gene_prediction_scores(sce_correct, genes.selection = rownames(sce_correct), n.neigh = 2 , nPC.selection = 5.5),
"Check nPC.selection - should be NULL or positive integer",
fixed=TRUE
)
# nPC.all - NULL or positive scalar
expect_error(get_gene_prediction_scores(sce_correct, genes.selection = rownames(sce_correct), n.neigh = 2 , nPC.selection = "all"),
"Check nPC.selection - should be NULL or positive integer",
fixed=TRUE
)
# nPC - NULL or positive scalar
expect_error(get_gene_prediction_scores(sce_correct, genes.selection = rownames(sce_correct), n.neigh = 2 , nPC.selection = NULL),
NA)
# nPC - NULL or positive scalar
expect_error(get_gene_prediction_scores(sce_correct, genes.selection = rownames(sce_correct), n.neigh = 2 , nPC.selection = 3),
NA)
# nPC - NULL or positive scalar
expect_error(get_gene_prediction_scores(sce_correct, genes.selection = rownames(sce_correct), n.neigh = 2 , nPC.all = 3 , nPC.selection = 30000),
NA)
})
test_that("Wrong input, genes.predict", {
# genes should be character
expect_error(get_gene_prediction_scores(sce_correct, genes.selection = rownames(sce_correct) , genes.predict = c(1:5)),
"Check genes.predict - should be character vector",
fixed=TRUE
)
# genes should be character
expect_error(get_gene_prediction_scores(sce_correct, genes.selection = rownames(sce_correct) , genes.predict = NULL),
"Check genes.predict - should be character vector",
fixed=TRUE
)
# # genes.predict should be a subset of rownames in sce_correct
# expect_error(get_gene_prediction_scores(sce_correct, genes.selection = rownames(sce_correct) , genes.predict = as.character(c(1,2,3,6))),
# "Some gene names are missing from SCE.",
# fixed=TRUE
# )
# genes.predict should be a subset of rownames in sce_correct
expect_error(get_gene_prediction_scores(sce_correct, genes.selection = rownames(sce_correct) , genes.all = as.character(c(1:5)) , genes.predict = as.character(c(4,5))),
NA
)
# genes.predict should be a subset of rownames in sce_correct
expect_error(get_gene_prediction_scores(sce_correct, genes.selection = rownames(sce_correct) , genes.all = as.character(c(1:5)) , genes.predict = as.character(c(4))),
NA
)
})
test_that("Wrong input, method", {
# method is of the right entity
expect_error(get_gene_prediction_scores(sce_correct, genes.selection = as.character(c(1,4,5)) , method = NULL),
"Check method - should be either 'spearman', 'pearson' or 'kendall'",
fixed=TRUE
)
# method is of the right entity
expect_error(get_gene_prediction_scores(sce_correct, genes.selection = as.character(c(1,4,5)) , method = 0),
"Check method - should be either 'spearman', 'pearson' or 'kendall'",
fixed=TRUE
)
# method is of the right entity
expect_error(get_gene_prediction_scores(sce_correct, genes.selection = as.character(c(1,4,5)) , method = "random"),
"Check method - should be either 'spearman', 'pearson' or 'kendall'",
fixed=TRUE
)
#
expect_error(get_gene_prediction_scores(sce_correct, genes.selection = as.character(c(1,4,5)) , method = "pearson"),
NA
)
expect_error(get_gene_prediction_scores(sce_correct, genes.selection = as.character(c(1,4,5)) , method = "spearman"),
NA
)
expect_error(get_gene_prediction_scores(sce_correct, genes.selection = as.character(c(1,4,5)) , method = "kendall"),
NA
)
})
test_that("Wrong input, corr_all.thresh", {
# corr_all.thresh should be numeric
expect_error(get_gene_prediction_scores(sce_correct, genes.selection = as.character(c(1,4,5)) , corr_all.thresh = NULL),
"Check corr_all.thresh - should be numeric",
fixed=TRUE
)
# corr_all.thresh should be numeric
expect_error(get_gene_prediction_scores(sce_correct, genes.selection = as.character(c(2,3,5)) , corr_all.thresh = "random"),
"Check corr_all.thresh - should be numeric",
fixed=TRUE
)
# corr_all.thresh numeric is ok
expect_error(get_gene_prediction_scores(sce_correct, genes.selection = as.character(c(2,3,5)) , corr_all.thresh = 0),
NA
)
# corr_all.thresh numeric is ok
expect_error(get_gene_prediction_scores(sce_correct, genes.selection = as.character(c(2,3,5)) , corr_all.thresh = 1),
NA
)
# corr_all.thresh numeric is ok
expect_error(get_gene_prediction_scores(sce_correct, genes.selection = as.character(c(2,3,5)) , corr_all.thresh = 1000),
NA
)
# corr_all.thresh numeric is ok
expect_error(get_gene_prediction_scores(sce_correct, genes.selection = as.character(c(2,3,5)) , corr_all.thresh = -1000),
NA
)
})
test_that("Wrong input, gene_stat_all is of correct format", {
# corr_all.thresh should be numeric
expect_error(get_gene_prediction_scores(sce_correct, genes.selection = as.character(c(1,4,5)) , corr_all.thresh = NULL),
"Check corr_all.thresh - should be numeric",
fixed=TRUE
)
# corr_all.thresh should be numeric
expect_error(get_gene_prediction_scores(sce_correct, genes.selection = as.character(c(2,3,5)) , corr_all.thresh = "random"),
"Check corr_all.thresh - should be numeric",
fixed=TRUE
)
# corr_all.thresh numeric is ok
expect_error(get_gene_prediction_scores(sce_correct, genes.selection = as.character(c(2,3,5)) , corr_all.thresh = 0),
NA
)
# corr_all.thresh numeric is ok
expect_error(get_gene_prediction_scores(sce_correct, genes.selection = as.character(c(2,3,5)) , corr_all.thresh = 1),
NA
)
# corr_all.thresh numeric is ok
expect_error(get_gene_prediction_scores(sce_correct, genes.selection = as.character(c(2,3,5)) , corr_all.thresh = 1000),
NA
)
# corr_all.thresh numeric is ok
expect_error(get_gene_prediction_scores(sce_correct, genes.selection = as.character(c(2,3,5)) , corr_all.thresh = -1000),
NA
)
})
test_that("gene_stat_all is of correct format", {
# gene_stat_all can be NULL
expect_error(get_gene_prediction_scores(sce_correct, genes.selection = as.character(c(2)), n.neigh = 2),
NA
)
# gene_stat_all can be NULL
expect_error(get_gene_prediction_scores(sce_correct, genes.selection = as.character(c(2)), n.neigh = 2, gene_stat_all = NULL),
NA
)
# gene_stat_all should be data.frame with right columns
expect_error(get_gene_prediction_scores(sce_correct, genes.selection = as.character(c(2)), n.neigh = 2, gene_stat_all = c(1,3)),
"gene_stat_all is of the wrong format - should contain fields gene and corr_all.",
fixed=TRUE
)
# gene_stat_all should be data.frame with right columns
expect_error(get_gene_prediction_scores(sce_correct, genes.selection = as.character(c(2)), n.neigh = 2, gene_stat_all = data.frame(gene = 1 , corr = 2)),
"gene_stat_all is of the wrong format - should contain fields gene and corr_all.",
fixed=TRUE
)
# gene_stat_all should be data.frame with right columns
expect_error(get_gene_prediction_scores(sce_correct, genes.selection = as.character(c(2)), n.neigh = 2, gene_stat_all = data.frame(gene = 1 , corr_all = 2)),
NA
)
# gene_stat_all should be data.frame with right columns
expect_error(get_gene_prediction_scores(sce_correct, genes.selection = as.character(c(2)), n.neigh = 2, gene_stat_all = data.frame(gene = "1" , corr_all = 2)),
NA
)
# gene_stat_all should be data.frame with right columns
expect_error(get_gene_prediction_scores(sce_correct, genes.selection = as.character(c(2)), n.neigh = 2, gene_stat_all = data.frame(gene = "1" , corr_all = 2, random = "ok")),
NA
)
# gene_stat_all should be data.frame with right columns
expect_error(get_gene_prediction_scores(sce_correct, genes.selection = as.character(c(2)), n.neigh = 2, gene_stat_all = data.frame(gene = "0" , corr_all = 2, random = "ok")),
NA
)
# gonna give message if stat_all is sort of wrong
expect_message(get_gene_prediction_scores(sce_correct, genes.selection = as.character(c(2)), n.neigh = 2, gene_stat_all = data.frame(gene = "0" , corr_all = 2, random = "ok")),
"No genes are retained for this corr_all.thresh. Consider decreasing the threshold.",
fixed = TRUE
)
})
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.