View source: R/evaluate_library.R
evaluate_library | R Documentation |
For the selected library, returns estimates of the library quality (at cell, gene and/or celltype levels) as a function of number of genes. Grid of number of genes is specified with 'library.size_type' and 'n_genes.step' arguments. For each type of stat (cell, gene and/or celltype) returns data.frame with calculated statistics, and field 'n_genes' correspond to number of genes used.
evaluate_library(
sce,
genes.selection,
genes.all = rownames(sce),
batch = NULL,
n.neigh = 5,
nPC.all = 50,
library.size_type = "single",
n_genes.step = 10,
return.cell_score_stat = T,
return.gene_score_stat = T,
return.celltype_stat = T,
celltype.id = "celltype",
verbose = TRUE,
neighs.all_stat = NULL,
gene_stat_all = NULL,
...
)
sce |
SingleCellExperiment object containing gene counts matrix (stored in 'logcounts' assay). |
genes.selection |
Character vector specifying genes to be used for the construction of Selection kNN-graph. |
genes.all |
Character vector specifying genes to be used for the construction of True kNN-graph. |
batch |
Name of the field in colData(sce) to specify batch. Default batch=NULL if no batch is applied. |
n.neigh |
Positive integer > 1, specifying number of neighbors to use for kNN-graph. Default n.neigh=5. |
nPC.all |
Scalar (or NULL if no PCA is to be applied) specifying number of PCs to use for construction of True kNN-graph. Default nPC.all=50. |
library.size_type |
String identifying whether evaluation should be performed only on the whole inserted library (= 'single') or on a series of subsets of the library (= 'series'). Default library.size_type="single". |
n_genes.step |
In case library.size_type == "series", a scalar identifying the step of the grid for library subsets. Default n_genes.step=10. |
return.cell_score_stat |
Boolean identifying whether stat on cell neighborhood preservation score should be returned. Default return.cell_score_stat=TRUE. |
return.gene_score_stat |
Boolean identifying whether stat on gene prediction score should be returned. Default return.gene_score_stat=TRUE. |
return.celltype_stat |
Boolean identifying whether stat on celltype mapping should be returned. Default return.celltype_stat=TRUE. |
celltype.id |
Character specifying which field in colData(sce) should be used as celltype. Default celltype.id="celltype". |
verbose |
Boolean identifying whether intermediate print outputs should be returned. Default verbose=TRUE. |
neighs.all_stat |
If not NULL (NULL is default), contains precomputed stat relevant for cell neighbourhood preservation score. Use geneBasisR::get_neighs_all_stat to calculate this. |
gene_stat_all |
If not NULL (NULL is default), contains precomputed stat relevant for gene prediction score. Use geneBasisR::get_gene_correlation_scores to calculate this. |
... |
Additional parameters |
list of evaluation metrics on provided dataset and gene selection
require(SingleCellExperiment)
n_row = 1000
n_col = 100
sce = SingleCellExperiment(assays = list(logcounts = matrix(rnorm(n_row*n_col), ncol=n_col)))
rownames(sce) = as.character(1:n_row)
colnames(sce) = c(1:n_col)
sce$cell = colnames(sce)
sce$celltype = as.character(sample.int(5, n_col, replace = TRUE))
genes.selection = sample(rownames(sce) , 20)
out = evaluate_library(sce, genes.selection)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.