#' calc_Minkowski_distances
#'
#' Function returns Minkowski distances for kNN-graphs constructed from counts matrix in sce (stored in assay logcounts) using specified genes.
#'
#' @param sce SingleCellExperiment object containing gene counts matrix (stored in 'logcounts' assay).
#' @param genes Character vector containing genes that are used to construct kNN-graph.
#' @param batch Name of the field in colData(sce) to specify batch. Default batch=NULL if no batch is applied.
#' @param n.neigh Positive integer > 1, specifying number of neighbors to use for kNN-graph. Default n.neigh=5.
#' @param nPC Scalar (or NULL) specifying number of PCs to use for kNN-graph. Default nPC=NULL (no PCA).
#' @param genes.predict Character vector containing genes for which we want to calculate Minkowsky distances. Default genes.predict = rownames(sce).
#' @param p.minkowski Order of Minkowski distance. Default p.minkowski=3.
#' @param genes.discard Character vector containing genes to be excluded from candidates (note that they still will be used for graphs construction. If you want to exclude them from graph construction as well, just discard them prior in sce object). Default = NULL and no genes will be discarded.
#' @param genes.discard_prefix Character vector containing prefixes of genes to be excluded (e.g. Rpl for L ribosomal proteins. Note that they still will be used for graphs construction. If you want to exclude them from graph construction as well, just discard them prior in sce object). Default = NULL and no genes will be discarded.
#' @param ... Additional arguments
#'
#' @return data.frame, field 'gene' to gene from genes.predict; field 'dist' corresponds to calculated Minkowski distance.
#' @export
#' @importFrom gdata startsWith
#' @importFrom SingleCellExperiment logcounts
#' @importFrom stats dist
#'
#' @examples
#' require(SingleCellExperiment)
#' n_row = 1000
#' n_col = 100
#' sce = SingleCellExperiment(assays = list(logcounts = matrix(rnorm(n_row*n_col), ncol=n_col)))
#' rownames(sce) = as.character(1:n_row)
#' colnames(sce) = c(1:n_col)
#' sce$cell = colnames(sce)
#' genes = rownames(sce)
#' out = calc_Minkowski_distances(sce, genes)
#'
calc_Minkowski_distances = function(sce , genes , batch = NULL , n.neigh = 5 , nPC = NULL , genes.predict = rownames(sce) , p.minkowski = 3,
genes.discard = NULL, genes.discard_prefix = NULL,...){
args = c(as.list(environment()) , list(...))
if (!"check_args" %in% names(args)){
sce = .prepare_sce(sce)
out = .general_check_arguments(args) & .check_batch(sce , batch) & .check_genes_in_sce(sce , genes.predict) & .check_genes_in_sce(sce , genes)
}
else {
if (args[[which(names(args) == "check_args")]]){
sce = .prepare_sce(sce)
out = .general_check_arguments(args) & .check_batch(sce , batch) & .check_genes_in_sce(sce , genes.predict) & .check_genes_in_sce(sce , genes)
}
}
if (!is.null(genes)){
neighs = .get_mapping(sce , genes = genes, batch = batch , n.neigh = n.neigh , nPC = nPC)
}
else {
neighs = .initiate_random_mapping(sce , batch = batch , n.neigh = n.neigh)
}
# discard genes from Minkowski distance calculation
if (!is.null(genes.discard_prefix)){
rownames.sce = rownames(sce)
idx = sapply(1:nrow(sce) , function(i) max(startsWith(rownames.sce[i] , genes.discard_prefix)))
idx = which(idx == 1)
genes.discard = unique(c(genes.discard , rownames.sce[idx]))
}
genes.predict = setdiff(genes.predict , genes.discard)
if (length(genes.predict) > 1){
res = tryCatch(
{
counts_predict = as.matrix(logcounts(sce[genes.predict , ]))
stat_predict = matrix( 0L, nrow = dim(counts_predict)[1], ncol = dim(counts_predict)[2])
for (j in c(1:n.neigh)){
cells = neighs[,j]
stat_predict = stat_predict + counts_predict[, cells]
}
stat_predict = stat_predict / n.neigh
stat_real = counts_predict[, rownames(neighs)]
stat = lapply(1:nrow(counts_predict) , function(i){
out = data.frame(dist = as.numeric(dist(rbind(stat_real[i,] , stat_predict[i,]) , method = "minkowski" , p = p.minkowski)))
return(out)
})
stat = do.call(rbind , stat)
stat$gene = as.character(rownames(counts_predict))
stat = stat[, c("gene", "dist")]
stat
#return(stat)
},
error = function(dump){
#message("Count matrix is too big - we will be working with sparse matrices.")
counts_predict = logcounts(sce[genes.predict , ])
stat_predict = counts_predict
stat_predict[!stat_predict == 0] = 0
for (j in c(1:n.neigh)){
cells = neighs[,j]
stat_predict = stat_predict + counts_predict[, cells]
}
stat_predict = stat_predict / n.neigh
stat_real = counts_predict[, rownames(neighs)]
stat = lapply(1:nrow(counts_predict) , function(i){
out = data.frame(dist = as.numeric(dist(rbind(stat_real[i,] , stat_predict[i,]) , method = "minkowski" , p = p.minkowski)))
return(out)
})
stat = do.call(rbind , stat)
stat$gene = as.character(rownames(counts_predict))
stat = stat[, c("gene", "dist")]
return(stat)
},
error = function(dump){
message("Something went wrong: likely memory is exhausted. Try lower number of cells, lower n.neigh or lower number of genes.")
return(NA)
}
)
return(res)
}
else {
stop("Need at least 2 genes to be predicted. Try reducing the list of genes to be discraded.")
}
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.