SERRF: Systematic error removal using random forest (SERRF)...

View source: R/Randomforest.R

SERRFR Documentation

Systematic error removal using random forest (SERRF) normalization

Description

This systematic error removal method using random forest algorithm to detect molecule cluster based on sequential intensities profile and use median intensity of this cluster to normalize the data and eliminat the unwanted systematic variations in large sample sets.

Usage

SERRF(
  input = "Area.csv",
  Predict_level = "QC",
  data = NULL,
  datatype = c("MSDIAL", "MASSOMICS"),
  infopath = NULL,
  Log_trans = F,
  zero_imputaion = T,
  vis_norm_result = F
)

Arguments

input

locate the molecule intensities data

Predict_level

specify the sample class that will used for cluster prediction

Value

None

Examples

SERRF(input = "Area.csv",Predict_level=c("QC","Sample"))


MASHUOA/MassOmics documentation built on Nov. 3, 2023, 10:48 p.m.