#' Plot the cumulative percentage of tag allocation
#'
#' Plot the difference between the cumulative percentage of tag allocation in
#' paired samples.
#'
#' @param se An object of
#' \link[SummarizedExperiment:RangedSummarizedExperiment-class]{RangedSummarizedExperiment}
#' with assays of raw counts, transfomred ratios, background correct ratios,
#' smoothed ratios and z-scores. It should be an element of the output of
#' \link{smoothRatiosByChromosome}.
#' @param binWidth numeric(1) or integer(1). The width of each bin.
#' @param backgroundCorrectedAssay character(1). Assays names
#' for background correction ratios.
#' @param ... Parameter not used.
#' @import SummarizedExperiment
#' @import GenomicAlignments
#' @importFrom IRanges Views viewApply tile viewMeans
#' @import GenomicRanges
#' @import S4Vectors
#' @importFrom BiocGenerics which.min
#' @importFrom graphics abline axis legend matlines par plot
#' @export
#' @return A list of data.frame with the cumulative percentages.
#' @references Normalization, bias correction, and peak calling for ChIP-seq
#' Aaron Diaz, Kiyoub Park, Daniel A. Lim, Jun S. Song
#' Stat Appl Genet Mol Biol. Author manuscript;
#' available in PMC 2012 May 3.Published in final edited form as:
#' Stat Appl Genet Mol Biol. 2012 Mar 31; 11(3): 10.1515/1544-6115.1750
#' /j/sagmb.2012.11.issue-3/1544-6115.1750/1544-6115.1750.xml.
#' Published online 2012 Mar 31. doi: 10.1515/1544-6115.1750
#' PMCID: PMC3342857
#' @examples
#' library(SummarizedExperiment)
#' data(triplicate.count)
#' se <- triplicate.count
#' se <- log2se(se, transformation = "log2CPMRatio",
#' nucleolusCols = c("N18.subsampled.srt-2.bam",
#' "N18.subsampled.srt-3.bam",
#' "N18.subsampled.srt.bam"),
#' genomeCols = c("G18.subsampled.srt-2.bam",
#' "G18.subsampled.srt-3.bam",
#' "G18.subsampled.srt.bam"))
#' se <- smoothRatiosByChromosome(se, chr="chr18")
#' cumulativePercentage(se[["chr18"]])
cumulativePercentage <- function(se,
binWidth = 1e5,
backgroundCorrectedAssay = "bcRatio",...)
{
stopifnot(is(se, "RangedSummarizedExperiment"))
assayName <-
c("nucleolus", "genome", backgroundCorrectedAssay)
if (any(!assayName %in% names(assays(se))))
{
stop(
"nucleolus",
"genome",
backgroundCorrectedAssay,
"should be the assays of se.")
}
## resample
sampleName <-
unique(do.call(rbind, lapply(assays(se), colnames)))
if (nrow(sampleName) != 1)
{
stop("The column names of assays in se are not identical.")
}
sampleName <- sampleName[1, , drop = TRUE]
seqL <- ranges(range(rowRanges(se)))
if (length(seqL) != 1)
{
stop("One chromosome only.")
}
features <- tile(seqL, width = binWidth)[[1]]
sigBin <- lapply(sampleName, function(.n) {
sig <- sapply(assayName[-3],
exportSignals,
dat = se,
colName = .n)
sig <- lapply(sig, function(.ele) {
.ele <- .ele[[1]]
v <- Views(.ele, features)
viewMeans(v, na.rm = TRUE)
})
sig <- do.call(cbind, sig)
sig[order(sig[, "nucleolus"]),]
})
sigCumsum <- lapply(sigBin, function(.ele) {
.ele <- apply(.ele, 2, cumsum)
.ele <- cbind(Rank = seq_len(nrow(.ele)), .ele)
sweep(.ele,
MARGIN = 2,
STATS = .ele[nrow(.ele), ],
FUN = `/`)
})
sigEnrichStart <- sapply(sigBin, function(.ele) {
.r <- (.ele[, "nucleolus"] + 1) / (.ele[, "genome"] + 1)
## split .r into two parts, background and enriched
.x <- cumsum(.r)
.y <- sum(.r) - .x
.l <- length(.x)
.mx <- .x / seq_len(.l)
.my <- .y / (.l - seq_len(.l) + 1)
.R <- numeric(.l)
for (i in seq_len(.l - 1))
{
.R[i] <- sum((.r[seq_len(i)] - .mx[i]) ^ 2) +
sum((.r[(i + 1):.l] - .my[i]) ^ 2)
}
which.min(.R)[1] / .l})
pin <- par("pin")
if (pin[2] > 0)
{
ratio <- 2 ^ round(diff(log2(pin)))
n <- length(sampleName)
ncol <- ceiling(sqrt(n / ratio))
nrow <- ceiling(n / ncol)
op <- par(mfrow = c(nrow, ncol), pty = "s")
on.exit(par(op))
for (i in seq_len(n))
{
## plot
plot(
c(0, 1),
c(0, 1),
type = "n",
xlab = "% of bins",
ylab = "% of tags",
main = sampleName[i]
)
matlines(x = sigCumsum[[i]][, 1],
y = sigCumsum[[i]][, -1])
zero <- which(sigCumsum[[i]][, "nucleolus"] > 1 / binWidth)
if (length(zero) > 0)
{
x.tick <- sigCumsum[[i]][zero[1], 1]
abline(v = x.tick,
col = "yellowgreen",
lty = 3)
if (sigEnrichStart[i] < 1)
{
abline(v = sigEnrichStart[i],
col = "violetred",
lty = 3)
x.tick <- c(x.tick, sigEnrichStart[i])
}
axis(3,
at = x.tick,
labels = formatC(x.tick, digits = 2))
}
legend(
"topleft",
legend = colnames(sigCumsum[[i]])[-1],
col = seq_len(6),
lty = seq_len(5),
pch = NA,
box.col = NA
)
}
}
return(invisible(sigCumsum))
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.