#' Test for differences along pseudotime
#'
#' Implements a simple method of testing for significant differences with respect to pseudotime,
#' based on fitting linear models with a spline basis matrix.
#'
#' @param x A numeric matrix-like object containing log-expression values for cells (columns) and genes (rows).
#' Alternatively, a \linkS4class{SummarizedExperiment} containing such a matrix.
#' @param pseudotime A numeric vector of length equal to \code{ncol(x)}, containing the pseudotime orderings along a single lineage.
#' Alternatively, a numeric matrix with number of rows equal to \code{ncol(x)}, where each column contains an ordering across one of multiple lineages.
#' Alternatively, a \linkS4class{PseudotimeOrdering} object containing such a matrix in \code{\link{pathStat}(pseudotime)}.
#' @param df Integer scalar specifying the degrees of freedom for the splines.
#' @param get.lfc Logical scalar indicating whether to return an overall log-fold change along each path.
#' @param get.spline.coef Logical scalar indicating whether to return the estimates of the spline coefficients.
#' @param trend.only Deprecated and ignored.
#' @param ... For the generic, further arguments to pass to specific method.
#'
#' For the SummarizedExperiment method, further arguments to pass to the ANY method.
#' @param assay.type String or integer scalar specifying the assay containing the log-expression matrix.
#' @param block Factor of length equal to the number of cells in \code{x}, specifying the blocking factor.
#' @param row.data A \linkS4class{DataFrame} with the same number and order of rows in \code{x},
#' containing per-gene annotations to be \code{\link{cbind}}ed to the output DataFrame(s).
#' @param BPPARAM A BiocParallelParam object from the \pkg{BiocParallel} package, used to control parallelization.
#'
#' @return
#' If \code{pseudotime} is a vector, a \linkS4class{DataFrame} is returned containing the statistics for each gene (row),
#' including the p-value and its BH-adjusted equivalent.
#' If \code{get.lfc=TRUE}, an overall log-fold change is returned for each path.
#'
#' If \code{get.spline.coef=TRUE}, the estimated spline coefficients are also returned (single path)
#' or the differences in the spline fits to the first path are returned (multiple paths).
#'
#' If \code{pseudotime} is a 2-dimensional object, a list of DataFrames is instead returned.
#' Each DataFrame has the same format as described above and contains test statistics for each column (i.e., lineage) in \code{pseudotime}.
#'
#' @details
#' This function fits a natural spline to the expression of each gene with respect to pseudotime.
#' It then does an ANOVA to test whether any of the spline coefficients are non-zero.
#' In this manner, genes exhibiting a significant (and potentially non-linear) trend
#' with respect to the pseudotime can be detected as those with low p-values.
#'
#' Branched trajectories with multiple paths are represented by a 2-dimensional \code{pseudotime}.
#' In this case, only one path is tested at a time by only using one column of \code{pseudotime} to form the spline basis matrix.
#' Cells with \code{NA} values in any given \code{pseudotime} column are assumed to be assigned to a different path and are ignored when fitting the corresponding model.
#'
#' By default, estimates of the spline coefficients are not returned as they are difficult to interpret.
#' Rather, a log-fold change of expression along each path is estimated
#' to provide some indication of the overall magnitude and direction of any change.
#'
#' \code{block} can be used to fit a separate linear model to each of multiple batches,
#' after which the statistics are combined across batches as described in \code{\link[scran]{testLinearModel}}.
#' This avoids potential confounding effects from batch-specific differences in the distribution of cells across pseudotime.
#'
#' @author Aaron Lun
#'
#' @examples
#' y <- matrix(rnorm(10000), ncol=100)
#' u <- runif(100)
#' testPseudotime(y, u)
#'
#' # Handling a blocking factor.
#' b <- gl(2, 50)
#' testPseudotime(y, u, block=b)
#'
#' @seealso
#' \code{\link{orderCells}}, to generate the pseudotime matrix.
#'
#' \code{\link[scran]{testLinearModel}}, which performs the tests under the hood.
#'
#' @name testPseudotime
NULL
#' @importFrom S4Vectors metadata
#' @importFrom TrajectoryUtils pathStat
.test_pseudotime <- function(x, pseudotime, df=5, get.lfc=TRUE, get.spline.coef=FALSE, trend.only=TRUE, block=NULL, row.data=NULL, BPPARAM=NULL) {
drop <- FALSE
if (is(pseudotime, "PseudotimeOrdering")) {
pseudotime <- pathStat(pseudotime)
} else if (is.null(dim(pseudotime))) {
drop <- TRUE
pseudotime <- cbind(pseudotime)
}
if (is.null(BPPARAM)) {
BPPARAM <- BiocParallel::SerialParam()
}
if (scuttle::.bpNotSharedOrUp(BPPARAM)) {
BiocParallel::bpstart(BPPARAM)
on.exit(BiocParallel::bpstop(BPPARAM))
}
output <- vector("list", ncol(pseudotime))
names(output) <- colnames(pseudotime)
args <- list(df=df, get.lfc=get.lfc, get.spline.coef=get.spline.coef, BPPARAM=BPPARAM)
for (i in seq_len(ncol(pseudotime))) {
if (is.null(block)) {
output[[i]] <- do.call(.test_solo_pseudotime, c(list(x, pseudotime=pseudotime[,i]), args))
} else {
by.block <- split(seq_len(ncol(x)), block)
ncells <- lengths(by.block)
valid <- logical(length(by.block))
for (b in seq_along(by.block)) {
current <- by.block[[b]]
output <- do.call(.test_solo_pseudotime, c(list(x[,current,drop=FALSE], pseudotime=pseudotime[current,i]), args))
by.block[[b]] <- output
resid.df <- metadata(output)$residual.df
valid[b] <- !is.na(resid.df) && resid.df > 0L
}
output[[i]] <- scran::combineBlocks(
by.block,
method="stouffer",
geometric=FALSE,
equiweight=FALSE,
weights=ncells,
ave.fields=setdiff(colnames(by.block[[1]]), c("p.value", "FDR")),
pval.field="p.value",
valid=valid
)
}
if (!is.null(row.data)) {
output[[i]] <- cbind(output[[i]][,0], row.data, output[[i]])
}
}
if (drop) {
output[[1]]
} else {
output
}
}
#' @importFrom stats model.matrix
.test_solo_pseudotime <- function(x, pseudotime, df, get.lfc, get.spline.coef, BPPARAM) {
keep <- !is.na(pseudotime)
pseudotime <- pseudotime[keep]
x <- x[,keep,drop=FALSE]
design <- .forge_spline_basis_design(pseudotime, df=df)
output <- scran::testLinearModel(x, design=design, coefs=2:ncol(design), BPPARAM=BPPARAM)
if (get.lfc) {
prior <- colnames(output)
design.lfc <- model.matrix(~pseudotime)
output$logFC <- scuttle::fitLinearModel(x, design=design.lfc, BPPARAM=BPPARAM)$coefficients[,2]
output <- output[,c("logFC", prior)]
}
if (!get.spline.coef) {
output <- output[,setdiff(colnames(output), colnames(design))]
}
output
}
#' @importFrom stats model.matrix
.forge_spline_basis_design <- function(p, df) {
# Uniquify'ing to avoid non-full rank problems when
# many of the quantiles are stacked at the same position.
up <- unique(p)
if (length(up) <= df) {
stop("'not enough unique pseudotime values for the specified 'df'")
}
basis <- splines::ns(up, df=df)
colnames(basis) <- sprintf("spline%i", seq_len(df))
basis <- basis[match(p, up),,drop=FALSE]
cbind(Intercept=rep(1, length(p)), basis)
}
#' @export
#' @rdname testPseudotime
setGeneric("testPseudotime", function(x, ...) standardGeneric("testPseudotime"))
#' @export
#' @rdname testPseudotime
setMethod("testPseudotime", "ANY", .test_pseudotime)
#' @export
#' @rdname testPseudotime
#' @importFrom SummarizedExperiment assay
setMethod("testPseudotime", "SummarizedExperiment", function(x, ..., assay.type="logcounts") {
.test_pseudotime(assay(x, assay.type), ...)
})
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.