#' @title quickTC
#' @description Plots miRNA:mRNA pair over timecourse.
#' @param filt_df Dataframe from the matrixFilter function.
#' @param pair Interger representing the pair to be explored.
#' @param miRNA_exp miRNA data from using the diffExpressRes function on miRNA
#' data.
#' @param mRNA_exp mRNA data from using the diffExpressRes function on miRNA
#' data
#' @param scale TRUE or FALSE. Should data be scales. Default is FALSE.
#' @param Interpolation TRUE or FALSE. Should the whole time course be
#' interpolated over by a smooth spline? Default is FALSE. This is most useful
#' for longer time courses.
#' @param timecourse If Iterpolation is TRUE, how many time points should be
#' interpolated over?
#' @return Time course plot of selected pair.
#' @export
#' @usage quickTC(filt_df, pair, miRNA_exp, mRNA_exp, scale,Interpolation,
#' timecourse)
#' @importFrom ggplot2 theme_classic scale_colour_manual
#' @importFrom FreqProf approxm
#' @examples
#' library(org.Mm.eg.db)
#'
#' miR <- mm_miR[1:50,]
#'
#' mRNA <- mm_mRNA[1:100,]
#'
#' MAE <- startObject(miR = miR, mRNA = mRNA)
#'
#' MAE <- getIdsMir(MAE, assay(MAE, 1), orgDB = org.Mm.eg.db, 'mmu')
#'
#' MAE <- getIdsMrna(MAE, assay(MAE, 2), "useast", 'mmusculus', orgDB = org.Mm.eg.db)
#'
#' MAE <- diffExpressRes(MAE, df = assay(MAE, 1), dataType = 'Log2FC',
#' genes_ID = assay(MAE, 3),
#' idColumn = 'GENENAME',
#' name = "miRNA_log2fc")
#'
#' MAE <- diffExpressRes(MAE, df = assay(MAE, 2), dataType = 'Log2FC',
#' genes_ID = assay(MAE, 7),
#' idColumn = 'GENENAME',
#' name = "mRNA_log2fc")
#'
#' Filt_df <- data.frame(row.names = c("mmu-miR-145a-3p:Adamts15",
#' "mmu-miR-146a-5p:Acy1"),
#' corr = c(-0.9191653, 0.7826041),
#' miR = c("mmu-miR-145a-3p", "mmu-miR-146a-5p"),
#' mRNA = c("Adamts15", "Acy1"),
#' miR_Entrez = c(387163, NA),
#' mRNA_Entrez = c(235130, 109652),
#' TargetScan = c(1, 0),
#' miRDB = c(0, 0),
#' Predicted_Interactions = c(1, 0),
#' miRTarBase = c(0, 1),
#' Pred_Fun = c(1, 1))
#'
#' MAE <- matrixFilter(MAE, miningMatrix = Filt_df, negativeOnly = FALSE,
#' threshold = 1, predictedOnly = FALSE)
#'
#' quickTC(filt_df=MAE[[11]], pair=1, miRNA_exp=MAE[[9]],
#' mRNA_exp=MAE[[10]], scale = FALSE)
quickTC <- function(filt_df, pair, miRNA_exp, mRNA_exp, scale=FALSE,
Interpolation=FALSE, timecourse){
Time <- Expression <- Gene <- NULL
x <- miRNA_exp
x$ID <- NULL
if(length(colnames(x)) < 5) {
print('Warning: Fewer than five time points detected. Correlation results may be overestimated!')
}
Int <- pickPair(filt_df, pair, miRNA_exp, mRNA_exp, scale)
if (Interpolation == TRUE) {
if (missing(timecourse)) stop('timecourse is missing. How many time points to interpolate over? This should be the whole time course.')
x <- miRNA_exp
x$ID <- NULL
if(length(colnames(x)) < 5) {
print('Warning: Fewer than five time points detected. This dataset is not suitable for interpolation analysis!')
}
Int <- FreqProf::approxm(as.data.frame(Int), timecourse,
method = "spline")
}else if (Interpolation == FALSE) {
Int <- Int
}
Ranks <- filt_df[,c(1,2,3)][order(filt_df$corr, decreasing = FALSE),]
Corr <- round(Ranks[1][pair,],2)
X <- as.data.frame(Int)
rownames(X) <- X$Time
X$Time <- NULL
Melted <- melt(as.matrix(X), varnames = c("Time", "Gene"))
colnames(Melted)[3] <- "Expression"
miR <- as.character(unique(Melted$Gene)[[1]])
mRNA <- as.character(unique(Melted$Gene)[[2]])
Melted$Gene <- factor(Melted$Gene, levels = c(mRNA, miR)) # define order/levels
ggplot(Melted, aes(x = Time, y = Expression, group = Gene, color = Gene)) +
geom_line(size = 3) + # simplified
scale_colour_manual(values = c("Red", "Blue")) +
theme_classic() +
labs(title= paste0(miR, ":", mRNA, " Expression"),
x="Time",
y="Expression",
subtitle=paste0("Corr = ", Corr))+
theme(plot.title=element_text(size=20, face="bold",hjust = 0.5),
axis.text.x=element_text(size=15),
axis.text.y=element_text(size=15),
axis.title.x=element_text(size=20),
axis.title.y=element_text(size=20),
legend.text=element_text(size=12))+
theme(plot.subtitle=element_text(size=25, hjust=1.2,
face="italic", color="black"))
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.