quickTC | R Documentation |
Plots miRNA:mRNA pair over timecourse.
quickTC(filt_df, pair, miRNA_exp, mRNA_exp, scale,Interpolation,
timecourse)
filt_df |
Dataframe from the matrixFilter function. |
pair |
Interger representing the pair to be explored. |
miRNA_exp |
miRNA data from using the diffExpressRes function on miRNA data. |
mRNA_exp |
mRNA data from using the diffExpressRes function on miRNA data |
scale |
TRUE or FALSE. Should data be scales. Default is FALSE. |
Interpolation |
TRUE or FALSE. Should the whole time course be interpolated over by a smooth spline? Default is FALSE. This is most useful for longer time courses. |
timecourse |
If Iterpolation is TRUE, how many time points should be interpolated over? |
Time course plot of selected pair.
library(org.Mm.eg.db)
miR <- mm_miR[1:50,]
mRNA <- mm_mRNA[1:100,]
MAE <- startObject(miR = miR, mRNA = mRNA)
MAE <- getIdsMir(MAE, assay(MAE, 1), orgDB = org.Mm.eg.db, 'mmu')
MAE <- getIdsMrna(MAE, assay(MAE, 2), "useast", 'mmusculus', orgDB = org.Mm.eg.db)
MAE <- diffExpressRes(MAE, df = assay(MAE, 1), dataType = 'Log2FC',
genes_ID = assay(MAE, 3),
idColumn = 'GENENAME',
name = "miRNA_log2fc")
MAE <- diffExpressRes(MAE, df = assay(MAE, 2), dataType = 'Log2FC',
genes_ID = assay(MAE, 7),
idColumn = 'GENENAME',
name = "mRNA_log2fc")
Filt_df <- data.frame(row.names = c("mmu-miR-145a-3p:Adamts15",
"mmu-miR-146a-5p:Acy1"),
corr = c(-0.9191653, 0.7826041),
miR = c("mmu-miR-145a-3p", "mmu-miR-146a-5p"),
mRNA = c("Adamts15", "Acy1"),
miR_Entrez = c(387163, NA),
mRNA_Entrez = c(235130, 109652),
TargetScan = c(1, 0),
miRDB = c(0, 0),
Predicted_Interactions = c(1, 0),
miRTarBase = c(0, 1),
Pred_Fun = c(1, 1))
MAE <- matrixFilter(MAE, miningMatrix = Filt_df, negativeOnly = FALSE,
threshold = 1, predictedOnly = FALSE)
quickTC(filt_df=MAE[[11]], pair=1, miRNA_exp=MAE[[9]],
mRNA_exp=MAE[[10]], scale = FALSE)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.