R/gdcDEGVisulization.R

Defines functions gdcHeatmap gdcVolcanoPlot gdcBarPlot

Documented in gdcBarPlot gdcHeatmap gdcVolcanoPlot

##' @title Bar plot of differentially expressed genes/miRNAs
##' @description A bar plot showing the number of down-regulated and 
##'     up-regulated DE genes/miRNAs of different biotypes
##' @param deg a dataframe generated from \code{\link{gdcDEReport}} 
##'     containing DE genes/miRNAs ids, logFC, etc.
##' @param angle a numeric value specifying the angle of text on x-axis. 
##'     Default is \code{0}
##' @param data.type one of \code{'RNAseq'} and \code{'miRNAs'}
##' @return A bar plot
##' @export
##' @author Ruidong Li and Han Qu
##' @examples 
##' genes <- c('ENSG00000231806','ENSG00000261211','ENSG00000260920',
##'         'ENSG00000228594','ENSG00000125170','ENSG00000179909',
##'         'ENSG00000280012','ENSG00000134612','ENSG00000213071')
##' symbol <- c('PCAT7','AL031123.2','AL031985.3',
##'             'FNDC10','DOK4','ZNF154',
##'             'RPL23AP61','FOLH1B','LPAL2')
##' group <- rep(c('long_non_coding','protein_coding','pseudogene'), each=3)
##' logFC <- c(2.8,2.3,-1.1,1.9,-1.2,-1.6,1.5,2.1,-1.1)
##' FDR <- rep(c(0.1,0.00001,0.0002), each=3)
##' deg <- data.frame(symbol, group, logFC, FDR)
##' rownames(deg) <- genes
##' gdcBarPlot(deg, angle=45, data.type='RNAseq')
gdcBarPlot <- function(deg, angle=0, data.type) {

    if (data.type=='miRNAs') {
        down <- sum(deg$logFC < 0)
        up <- sum(deg$logFC > 0)
        
        d <- data.frame(geneClass = c('Up','Down'),
            geneNums = c(up, down), 
            Regulation = factor(c('Up-regulated','Down-regulated'),
            levels=c('Up-regulated','Down-regulated')))
        
        if (angle==0) {
            ggplot(data=d, aes(x=d$geneClass, y=d$geneNums, 
                fill=Regulation)) + geom_bar(stat = 'identity') + 
                scale_x_discrete(limits=d$geneClass) + 
                scale_fill_discrete(name = "") +
                ylab('No. of Differentially Expressed miRNAs') +xlab('') +
                #theme(axis.text.x = element_text(angle = angle)) + 
                theme_bw()+theme(axis.line = element_line(colour = "black"),
                    panel.grid.major = element_blank(),
                    panel.grid.minor = element_blank(),
                    panel.border = element_rect(colour='white'),
                    panel.background = element_blank(),
                    axis.text.x = element_text(angle = angle,size=10),
                    axis.text.y=element_text(size=10))
        } else {
            ggplot(data=d, aes(x=d$geneClass, y=d$geneNums, 
                fill=Regulation)) + geom_bar(stat = 'identity') + 
                scale_x_discrete(limits=d$geneClass) + 
                scale_fill_discrete(name = "") +
                ylab('No. of Differentially Expressed miRNAs') +xlab('') +
                #theme(axis.text.x = 
                #element_text(angle = angle, vjust = 1, hjust=1)) +
                theme_bw()+theme(axis.line = element_line(colour = "black"),
                    panel.grid.major = element_blank(),
                    panel.grid.minor = element_blank(),
                    panel.border = element_rect(colour='white'),
                    panel.background = element_blank(),
                    axis.text.x = element_text(angle = angle, vjust = 1, 
                        hjust=1,size=10),
                    axis.text.y=element_text(size=10))
        }
        
    } else if (data.type=='RNAseq') {
        gr <- list()
        for (tp in unique(deg$group)) {
            gr[[tp]][['all']] <- sum(deg$group==tp)
            gr[[tp]]['up'] <- sum(deg$group==tp & deg$logFC > 0) 
            gr[[tp]]['down'] <- sum(deg$group==tp & deg$logFC < 0)
            
        }
        
        names(gr)[names(gr) == 'protein_coding'] <- 'Protein coding'
        names(gr)[names(gr) == 'long_non_coding'] <- 'Long non-coding'
        names(gr)[names(gr) == 'pseudogene'] <- 'Pseudogene'
        names(gr)[names(gr) == 'ncRNA'] <- 'Other ncRNA'
        
        
        
        #names(gr)[names(gr) == 'IG'] <- 'Immunoglobulin gene'
        #names(gr)[names(gr) == 'TR'] <- 'T-cell receptor gene'
        #names(gr)[names(gr) == 'TEC'] <- 'To be experimentally confirmed'
        
        o <- order(unlist(lapply(gr, function(v) v[['all']])), 
            decreasing=TRUE)
        
        d <- data.frame(geneClass = rep(names(gr)[o], 2),
            geneNums = c(unlist(lapply(gr, function(v) v[['up']]))[o],
                unlist(lapply(gr, function(v) v[['down']]))[o]), 
            Regulation = factor(rep(c('Up-regulated','Down-regulated'), 
                each=length(gr)), levels=c('Up-regulated','Down-regulated')))
        
        if (angle==0) {
            ggplot(data=d, aes(x=d$geneClass, y=d$geneNums, 
                fill=Regulation)) + geom_bar(stat = 'identity') + 
                scale_x_discrete(limits=d$geneClass[seq_len(nrow(d)/2)]) + 
                scale_fill_discrete(name = "") +
                ylab('No. of Differentially Expressed Genes') +
                xlab('') +
                #theme(axis.text.x = element_text(angle = angle)) +
                theme_bw()+theme(axis.line = element_line(colour = "black"),
                    panel.grid.major = element_blank(),
                    panel.grid.minor = element_blank(),
                    panel.border = element_rect(colour='white'),
                    panel.background = element_blank(),
                    axis.text.x = element_text(angle = angle,size=14),
                    axis.text.y=element_text(size=14))
        } else {
            ggplot(data=d, aes(x=d$geneClass, y=d$geneNums, 
                fill=Regulation)) + geom_bar(stat = 'identity') + 
                scale_x_discrete(limits=d$geneClass[seq_len(nrow(d)/2)]) + 
                scale_fill_discrete(name = "") +
                ylab('No. of Differentially Expressed Genes') +
                xlab('') +
                #theme(axis.text.x = 
                #element_text(angle = angle, vjust = 1, hjust=1)) +
                theme_bw()+theme(axis.line = element_line(colour = "black"),
                    panel.grid.major = element_blank(),
                    panel.grid.minor = element_blank(),
                    panel.border = element_rect(colour='white'),
                    panel.background = element_blank(),
                    axis.text.x = element_text(angle = angle, vjust = 1, 
                        hjust=1,size=14),
                    axis.text.y=element_text(size=14)) +
                theme(axis.title=element_text(size=16), 
                    legend.text = element_text(size=14))
        }
    }
}



##' @title Volcano plot of differentially expressed genes/miRNAs
##' @description A volcano plot showing differentially expressed genes/miRNAs
##' @param deg.all a dataframe generated from \code{\link{gdcDEAnalysis}} 
##'     containing all genes of analysis no matter they are differentially 
##'     expressed or not
##' @param fc a numeric value specifying the threshold of fold change
##' @param pval a nuemric value specifying the threshold of p value
##' @return A volcano plot
##' @export
##' @author Ruidong Li and Han Qu
##' @examples 
##' genes <- c('ENSG00000231806','ENSG00000261211','ENSG00000260920',
##'         'ENSG00000228594','ENSG00000125170','ENSG00000179909',
##'         'ENSG00000280012','ENSG00000134612','ENSG00000213071')
##' symbol <- c('PCAT7','AL031123.2','AL031985.3',
##'             'FNDC10','DOK4','ZNF154',
##'             'RPL23AP61','FOLH1B','LPAL2')
##' group <- rep(c('long_non_coding','protein_coding','pseudogene'), each=3)
##' logFC <- c(2.8,2.3,-1.1,1.9,-1.2,-1.6,1.5,2.1,-1.1)
##' FDR <- rep(c(0.1,0.00001,0.0002), each=3)
##' deg <- data.frame(symbol, group, logFC, FDR)
##' rownames(deg) <- genes
##' gdcVolcanoPlot(deg.all=deg)
gdcVolcanoPlot <- function(deg.all, fc=2, pval=0.01) {
    geneList <- deg.all
    geneList$threshold <- c()
    geneList$threshold[geneList$logFC>log(fc,2) & geneList$FDR<pval] <- 1
    geneList$threshold[geneList$logFC>=-log(fc,2) & geneList$logFC<=log(fc,2) 
        | geneList$FDR>=pval] <- 2
    geneList$threshold[geneList$logFC < -log(fc,2) & geneList$FDR<pval] <- 3
    
    geneList$threshold <- as.factor(geneList$threshold)
    
    lim <- max(max(geneList$logFC), abs(min(geneList$logFC)))+0.5
    
    volcano <- ggplot(data=geneList, aes(x=geneList$logFC, 
        y = -log10(geneList$FDR)))
    volcano+geom_point(aes(color=geneList$threshold), alpha=1, size=0.8) + 
        xlab("log2(Fold Change)") + ylab("-log10(FDR)") +
        scale_colour_manual(breaks = geneList$threshold, 
            values = c('red','black','green3')) + xlim(c(-lim,lim)) +
        geom_vline(xintercept = c(-log(fc,2),log(fc,2)), 
            color='darkgreen', linetype=3) + 
        geom_hline(yintercept = -log(pval,10), color='darkgreen',linetype=3)+
        theme_bw() +
        theme(axis.line = element_line(colour = "black"),
            panel.grid.major = element_blank(),
            panel.grid.minor = element_blank(),
            panel.border = element_rect(colour='black'),
            panel.background = element_blank()) +
        theme(legend.position="none") +
        theme(axis.text=element_text(size=14), 
            axis.title=element_text(size=16))
}



##' @title Heatmap of differentially expressed genes/miRNAs
##' @description A heatmap showing unsupervised hierarchical clustering of 
##'     DE genes/miRNAs by \code{\link[gplots]{heatmap.2}} in the 
##'     \pkg{gplots} package
##' @param deg.id a vector of Ensembl gene ids or miRBase v21 mature miRNA ids
##' @param metadata metadata parsed from \code{\link{gdcParseMetadata}}
##' @param rna.expr \code{\link[limma]{voom}} transformed expression data
##' @importFrom gplots heatmap.2
##' @importFrom gplots colorpanel
##' @importFrom gplots bluered
##' @return A heatmap with rows are DE genes/miRNAs and columns are samples.
##'     \emph{Solid Tissue Normal} samples are labeled with blue and 
##'     \emph{Primary Tumor} samples are labeled with red
##' @export
##' @author Ruidong Li and Han Qu
##' @examples 
##' genes <- c('ENSG00000000938','ENSG00000000971','ENSG00000001036',
##'         'ENSG00000001084','ENSG00000001167','ENSG00000001460')
##' 
##' samples <- c('TCGA-2F-A9KO-01', 'TCGA-2F-A9KP-01',
##'             'TCGA-2F-A9KQ-01', 'TCGA-2F-A9KR-01',
##'              'TCGA-2F-A9KT-01', 'TCGA-2F-A9KW-01')
##'              
##' metaMatrix <- data.frame(sample_type=rep('PrimaryTumor',6),
##'                         sample=samples,
##'                         days_to_death=seq(100,600,100),
##'                         days_to_last_follow_up=rep(NA,6))
##' rnaExpr <- matrix(c(2.7,7.0,4.9,6.9,4.6,2.5,
##'                     0.5,2.5,5.7,6.5,4.9,3.8,
##'                     2.1,2.9,5.9,5.7,4.5,3.5,
##'                     2.7,5.9,4.5,5.8,5.2,3.0,
##'                     2.5,2.2,5.3,4.4,4.4,2.9,
##'                     2.4,3.8,6.2,3.8,3.8,4.2),6,6)
##' rownames(rnaExpr) <- genes
##' colnames(rnaExpr) <- samples
##' gdcHeatmap(deg.id=genes, metadata=metaMatrix, rna.expr=rnaExpr)
gdcHeatmap <- function(deg.id, metadata, rna.expr) {

    degDa <- rna.expr[deg.id,]
    
    sampleCol <- ifelse(metadata$sample_type=='SolidTissueNormal', 
        'blue', 'red')
    #col=colorpanel(75,"darkblue","white","orangered")
    lmat = rbind(c(4,3),c(2,1))
    lwid = c(2,4)
    lhei = c(1,5)
    
    heatmap.2(as.matrix(degDa), col=bluered(75), trace='none', 
        cexCol=0.32, cexRow=0.1,dendrogram='both', srtCol=90, 
        adjCol=c(0.8,0.15), density.info="none", labRow=NA,
        key.title=NA,na.color=NA,lwid=lwid, lhei=lhei,  
        margins =c(3,3), labCol=NA, key.xlab='Normalized intensity', 
        scale='row', ColSideColors = sampleCol)
}
Jialab-UCR/GDCRNATools documentation built on Nov. 28, 2020, 11:23 a.m.