R/CalcSlope.R

Defines functions parPoisSlope poisSlope calcSlope

# calcSlope is a helper function to calculate the expression-depth slope
#
#' @importFrom Matrix Matrix
#' @importFrom Matrix colSums
#' @importFrom scran quickCluster
#' @importFrom BiocSingular IrlbaParam
#' @importFrom stats density
#' @importFrom stats approxfun
calcSlope <- function(counts, depth, nSubGene, nSubCell, clusterSlope,
                nCores, ...) {
    if(nrow(counts) > nSubCell) {
        subInd <- sample.int(nrow(counts), nSubCell)
        subCounts <- counts[subInd, ]
        subDepth <- depth[subInd]
    } else {
        subCounts <- counts
        subDepth <- depth
    }
    prll <- setPar(nCores)
    if(clusterSlope) {
        clustVec <- quickCluster(x = t(subCounts), BSPARAM = IrlbaParam(),
                                    BPPARAM = prll, ...)
    } else {
        clustVec <- rep(1, nSubCell)
    }

    # Subset genes with a minimum proportion of non-zeros
    subGenes <- colSums(subCounts > 0) / nrow(subCounts) >= 1e-2
    geneMu <- log(apply(subCounts, 2, function(x) {
        exp(mean(log(x + 1))) - 1
    }))
    muDens <- density(geneMu)
    muFunc <- approxfun(muDens$x, muDens$y)
    geneSamp <- sample(which(subGenes),
                    min(sum(subGenes), nSubGene),
                    prob = 1 / muFunc(geneMu[subGenes]))

    # Fit to batches of genes
    datList <- splitGenes(subCounts[, geneSamp], nCol = 40)
    clustTab <- table(clustVec)
    prll <- setPar(nCores, datList)
    slopeVec <- parPoisSlope(datList, subDepth, clustVec, clustTab,
                    prll, pctNZ = 0.01)

    return(mean(slopeVec))
}


# poisSlope is a helper function to compute poisson regression slopes
#
#' @importFrom stats glm
poisSlope <- function(y, depth, clustVec, clustTab, pctNZ = 0.01) {
    clustNZ <- table(clustVec[y > 0])
    regInd <- clustVec %in% names(clustNZ)[clustNZ > 1]
    y <- y[regInd]; depth <- depth[regInd]; clustVec <- clustVec[regInd]
    clustVec <- factor(clustVec, levels = unique(clustVec))
    if(length(levels(clustVec)) >= 2) {
        return(glm(y ~ depth + clustVec, family = "poisson")$coefficients[2])
    } else {
        return(glm(y ~ depth, family = "poisson")$coefficients[2])
    }
}


# parPoisSlope is a helper function to compute poisson regression slopes
#
#' @importFrom Matrix Matrix
parPoisSlope <- function(datList, depth, clustVec, clustTab, prll,
                    pctNZ = 0.01) {
    slopeVec <- bplapply(datList,
                    function(subDat, depth, clustVec, clustTab, pctNZ) {
                        subSlopes <- rep(1, ncol(subDat))
                        for(i in seq_len(ncol(subDat))) {
                            subSlopes[i] <- poisSlope(subDat[, i], depth,
                                                clustVec, clustTab,
                                                pctNZ)
                        }
                        return(subSlopes)
                    }, depth = depth, clustVec = clustVec,
                    clustTab = clustTab, pctNZ = pctNZ, BPPARAM = prll)
    do.call(c, slopeVec)
}
JBrownBiostat/Dino documentation built on June 11, 2022, 1:27 p.m.