tests/normalizeCurveFit.matrix.R

library("aroma.light")

pathname <- system.file("data-ex", "PMT-RGData.dat", package="aroma.light")
rg <- read.table(pathname, header=TRUE, sep="\t")
nbrOfScans <- max(rg$slide)

rg <- as.list(rg)
for (field in c("R", "G"))
  rg[[field]] <- matrix(as.double(rg[[field]]), ncol=nbrOfScans)
rg$slide <- rg$spot <- NULL
rg <- as.matrix(as.data.frame(rg))
colnames(rg) <- rep(c("R", "G"), each=nbrOfScans)

layout(matrix(c(1,2,0,3,4,0,5,6,7), ncol=3, byrow=TRUE))

rgC <- rg
for (channel in c("R", "G")) {
  sidx <- which(colnames(rg) == channel)
  channelColor <- switch(channel, R="red", G="green");

  # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
  # The raw data
  # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
  plotMvsAPairs(rg[,sidx])
  title(main=paste("Observed", channel))
  box(col=channelColor)

  # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
  # The calibrated data
  # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
  rgC[,sidx] <- calibrateMultiscan(rg[,sidx], average=NULL)

  plotMvsAPairs(rgC[,sidx])
  title(main=paste("Calibrated", channel))
  box(col=channelColor)
} # for (channel ...)


# - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
# The average calibrated data
#
# Note how the red signals are weaker than the green. The reason
# for this can be that the scale factor in the green channel is
# greater than in the red channel, but it can also be that there
# is a remaining relative difference in bias between the green
# and the red channel, a bias that precedes the scanning.
# - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
rgCA <- rg
for (channel in c("R", "G")) {
  sidx <- which(colnames(rg) == channel)
  rgCA[,sidx] <- calibrateMultiscan(rg[,sidx])
}

rgCAavg <- matrix(NA, nrow=nrow(rgCA), ncol=2)
colnames(rgCAavg) <- c("R", "G");
for (channel in c("R", "G")) {
  sidx <- which(colnames(rg) == channel)
  rgCAavg[,channel] <- apply(rgCA[,sidx], MARGIN=1, FUN=median, na.rm=TRUE);
}

# Add some "fake" outliers
outliers <- 1:600
rgCAavg[outliers,"G"] <- 50000;

plotMvsA(rgCAavg)
title(main="Average calibrated (AC)")

# - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
# Normalize data
# - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
# Weight-down outliers when normalizing
weights <- rep(1, nrow(rgCAavg));
weights[outliers] <- 0.001;

# Affine normalization of channels
rgCANa <- normalizeAffine(rgCAavg, weights=weights)
# It is always ok to rescale the affine normalized data if its
# done on (R,G); not on (A,M)! However, this is only needed for
# esthetic purposes.
rgCANa <- rgCANa *2^1.4
plotMvsA(rgCANa)
title(main="Normalized AC")

# Curve-fit (lowess) normalization
rgCANlw <- normalizeLowess(rgCAavg, weights=weights)
plotMvsA(rgCANlw, col="orange", add=TRUE)

# Curve-fit (loess) normalization
rgCANl <- normalizeLoess(rgCAavg, weights=weights)
plotMvsA(rgCANl, col="red", add=TRUE)

# Curve-fit (robust spline) normalization
rgCANrs <- normalizeRobustSpline(rgCAavg, weights=weights)
plotMvsA(rgCANrs, col="blue", add=TRUE)

legend(x=0,y=16, legend=c("affine", "lowess", "loess", "r. spline"), pch=19,
       col=c("black", "orange", "red", "blue"), ncol=2, x.intersp=0.3, bty="n")


plotMvsMPairs(cbind(rgCANa, rgCANlw), col="orange", xlab=expression(M[affine]))
title(main="Normalized AC")
plotMvsMPairs(cbind(rgCANa, rgCANl), col="red", add=TRUE)
plotMvsMPairs(cbind(rgCANa, rgCANrs), col="blue", add=TRUE)
abline(a=0, b=1, lty=2)
legend(x=-6,y=6, legend=c("lowess", "loess", "r. spline"), pch=19,
       col=c("orange", "red", "blue"), ncol=2, x.intersp=0.3, bty="n")
HenrikBengtsson/aroma.light-BioC_release documentation built on May 7, 2019, 1:55 a.m.