#' @rdname plotClusterExprs
#' @title Plot expression distributions by cluster
#'
#' @description Plots smoothed densities of marker intensities by cluster.
#'
#' @param x a \code{\link[SingleCellExperiment]{SingleCellExperiment}}.
#' @param k character string specifying which clustering to use;
#' valid values are \code{names(cluster_codes(x))}.
#' @param features a character vector specifying
#' which antigens to include; valid values are
#' \code{"type"/"state"} for \code{type/state_markers(x)}
#' if \code{rowData(x)$marker_class} have been specified;
#' a subset of \code{rownames(x)}; NULL to use all features.
#'
#' @author Helena L Crowell \email{helena.crowell@@uzh.ch}
#'
#' @references
#' Nowicka M, Krieg C, Crowell HL, Weber LM et al.
#' CyTOF workflow: Differential discovery in
#' high-throughput high-dimensional cytometry datasets.
#' \emph{F1000Research} 2017, 6:748 (doi: 10.12688/f1000research.11622.1)
#'
#' @return a \code{\link{ggplot}} object.
#'
#' @examples
#' # construct SCE & run clustering
#' data(PBMC_fs, PBMC_panel, PBMC_md)
#' sce <- prepData(PBMC_fs, PBMC_panel, PBMC_md)
#' sce <- cluster(sce)
#'
#' plotClusterExprs(sce, k = "meta8")
#'
#' @import ggplot2
#' @importFrom ggridges geom_density_ridges theme_ridges
#' @importFrom reshape2 melt
#' @importFrom S4Vectors metadata
#' @importFrom stats dist hclust
#' @importFrom SummarizedExperiment assay colData
#' @export
plotClusterExprs <- function(x,
k = "meta20", features = "type") {
# check validity of input arguments
.check_sce(x, TRUE)
k <- .check_k(x, k)
x$cluster_id <- cluster_ids(x, k)
features <- .get_features(x, features)
# order clusters according to hierarchical
# clustering on median feature expressions
ms <- t(.agg(x[features, ], "cluster_id", "median"))
d <- dist(ms, method="euclidean")
o <- hclust(d, method="average")$order
# construct data.frame of expression matrix include cell metadata
cd <- colData(x)
es <- assay(x[features, ], "exprs")
df <- data.frame(t(es), cd, check.names = FALSE)
df <- melt(df,
id.vars = names(cd),
variable.name = "antigen",
value.name = "expression")
# add average across all clusters as reference
df$avg <- "no"
avg <- df
avg$cluster_id <- "avg"
avg$avg <- "yes"
df <- rbind(df, avg)
# compute cluster frequencies
fq <- tabulate(x$cluster_id) / ncol(x)
fq <- round(fq * 100, 2)
names(fq) <- levels(x$cluster_id)
# reorder clusters
df$cluster_id <- factor(df$cluster_id,
levels = rev(c("avg", levels(x$cluster_id)[o])),
labels = rev(c("average", paste0(names(fq), " (", fq, "%)")[o])))
ggplot(df, aes_string(
x = "expression", y = "cluster_id",
col = "avg", fill = "avg")) +
facet_wrap(~antigen, scales = "free_x", nrow = 2) +
geom_density_ridges(alpha = 0.2) +
theme_ridges() + theme(
legend.position = "none",
strip.background = element_blank(),
strip.text = element_text(face = "bold"))
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.