#' @rdname filterSCE
#' @title \code{SingleCellExperiment} filtering
#'
#' @description Filters cells/features from a \code{SingleCellExperiment}
#' using conditional statements a la \code{dplyr}.
#'
#' @param x a \code{\link[SingleCellExperiment]{SingleCellExperiment}}.
#' @param ... conditional statements separated by comma.
#' Only rows/columns where the condition evaluates to TRUE are kept.
#' @param k numeric or character string. Specifies the clustering to extract
#' populations from. Must be one of \code{names(cluster_codes(x))}.
#' Defaults to the 1st clustering available.
#'
#' @author Helena L Crowell \email{helena.crowell@@uzh.ch}
#'
#' @return a \code{SingleCellExperiment}.
#'
#' @examples
#' # construct SCE & run clustering
#' data(PBMC_fs, PBMC_panel, PBMC_md, merging_table)
#' sce <- prepData(PBMC_fs, PBMC_panel, PBMC_md)
#' sce <- cluster(sce)
#'
#' # one condition only, remove a single sample
#' filterSCE(sce, condition == "Ref", sample_id != "Ref1")
#'
#' # keep only a subset of clusters
#' filterSCE(sce, cluster_id %in% c(7, 8, 18), k = "meta20")
#'
#' @importFrom dplyr filter mutate_all select
#' @importFrom S4Vectors metadata
#' @importFrom SingleCellExperiment reducedDims
#' @importFrom SummarizedExperiment
#' SummarizedExperiment assays colData rowData assays
#' @export
filterSCE <- function(x, ..., k = NULL) {
# check validity of input arguments
stopifnot(is(x, "SingleCellExperiment"))
# construct data.frames of cell & feature metadata
rd <- data.frame(rowData(x), check.names = FALSE)
cd <- data.frame(colData(x), check.names = FALSE)
rd$i <- seq_len(nrow(x))
cd$i <- seq_len(ncol(x))
# get specified clustering IDs
if (!is.null(k)) {
stopifnot(
!is.null(x$cluster_id),
!is.null(cluster_codes(x)))
k <- .check_k(x, k)
cd$cluster_id <- cluster_ids(x, k)
}
# filter rows & columns
rdf <- try(dplyr::filter(rd, ...), silent = TRUE)
cdf <- try(dplyr::filter(cd, ...), silent = TRUE)
if (inherits(rdf, "try-error")) rdf <- rd
if (inherits(cdf, "try-error")) cdf <- cd
ri <- rdf$i; rdf <- select(rdf, -"i")
ci <- cdf$i; cdf <- select(cdf, -"i")
rdf <- droplevels(rdf)
cdf <- droplevels(cdf)
# update experimental design table
md <- metadata(x)
ei <- .get_ei(cdf)
md$experiment_info <- ei
# revert colData(x)$cluster_id to 100 SOM clusters
if (!is.null(cluster_codes(x)))
cdf$cluster_id <- factor(
x$cluster_id[ci],
levels = levels(x$cluster_id))
# refactor 'colData' factor columns
for (i in colnames(cdf)) if (i %in% names(ei))
cdf[[i]] <- droplevels(factor(cdf[[i]], levels=levels(ei[[i]])))
# subset reduced dimensions
if (length(reducedDims(x)) > 0) {
dr <- reducedDims(x)
dr <- lapply(dr, "[", i = ci, j = TRUE)
} else dr <- NULL
# subset assays & returned filtered SCE
as <- lapply(assays(x), function(a)
a[ri, ci, drop = FALSE])
SingleCellExperiment(assays = as,
rowData = rdf, colData = cdf,
reducedDims = dr, metadata = md)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.